

- It is often useful to write a given function in different ways.
$-(\mathrm{eg})$ Let $\mathrm{S}:$ int \rightarrow int be a function where $\mathrm{S}(\mathrm{n})$ is the sum of the natural numbers from 0 to n.

$$
S(0)=0, S(3)=0+1+2+3=6
$$

- One definition: iterative form
- $\mathrm{S}(\mathrm{n})=0+1+\ldots+\mathrm{n}$
- Another definition: closed-form
- $\mathrm{S}(\mathrm{n})=\mathrm{n}(\mathrm{n}+1) / 2$

Defining Functions

Overview

- Recursion
- a strategy for writing programs that compute in a "divide-and-conquer" fashion
- solve a large problem by breaking it up into smaller problems of same kind
- Induction
- a mathematical strategy for proving statements about integers (more generally, about sets that can be ordered in some fairly general ways)
- Understanding induction is useful for figuring out how to write recursive code.

Equality of function definitions

- How would you prove the two definitions of $\mathrm{S}(\mathrm{n})$ are equal?
- In this case, we can use fact that terms of series form an arithmetic progression.
- Unfortunately, this is not a very general proof strategy, and it fails for more complex (and more interesting) functions.

Sum of Squares Functions

- Here is a more complex example.
- (eg) Let SQ:int \rightarrow int be a function where $\mathrm{SQ}(\mathrm{n})$ is the sum of the squares of natural numbers from 0 to n .

$$
\mathrm{SQ}(0)=0, \mathrm{SQ}(3)=0^{2}+1^{2}+2^{2}+3^{2}=14
$$

- One definition:
$-\mathrm{SQ}(\mathrm{n})=0^{2+1} 1^{2+} \ldots+\mathrm{n}^{2}$
- Is there a closed-form expression for $\mathrm{SQ}(\mathrm{n})$?

Closed-form expression for SQ(n)

- Sum of natural numbers up to n was $n(n+1) / 2$ which is a quadratic in n.
- Inspired guess: perhaps sum of squares on natural numbers up to n is a cubic in n.
- So conjecture: $S Q(n)=a . n^{3}+b . n^{2}+c . n+d$ where $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ are unknown coefficients.
- How can we find the values of the four unknowns?
- Use any 4 values of n to generate 4 linear equations, and solve.

Finding coefficients

$\mathrm{SQ}(\mathrm{n})=0^{2}+1^{2}+\ldots+\mathrm{n}^{2}=\mathrm{a} \cdot \mathrm{n}^{3}+\mathrm{b} \cdot \mathrm{n}^{2}+\mathrm{c} \cdot \mathrm{n}+\mathrm{d}$

- Let us use $\mathrm{n}=0,1,2,3$.
- $\mathrm{SQ}(0)=0=\mathrm{a} .0+\mathrm{b} .0+\mathrm{c} .0+\mathrm{d}$
- $\operatorname{SQ}(1)=1=\mathrm{a} .1+\mathrm{b} .1+\mathrm{c} .1+\mathrm{d}$
- $\operatorname{SQ}(2)=5=\mathrm{a} .8+\mathrm{b} .4+\mathrm{c} .2+\mathrm{d}$
- $\operatorname{SQ}(3)=14=\mathrm{a} .27+\mathrm{b} .9+\mathrm{c} .3+\mathrm{d}$
- Solve these 4 equations to get
$a=1 / 3, b=1 / 2, c=1 / 6, d=0$
- This suggests

$$
\begin{aligned}
\mathrm{SQ}(\mathrm{n}) & \equiv 0^{2}+1^{2}+\ldots+\mathrm{n}^{2} \\
& =\mathrm{n}^{3} / 3+\mathrm{n}^{2} / 2+\mathrm{n} / 6 \\
& =\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) / 6
\end{aligned}
$$

- Question: How do we know this closed-form solution is true for all values of n ?
- Remember, we only used $\mathrm{n}=0,1,2,3$ to determine these co-efficients. We do not know that the closed-form expression is valid for other values of n.

- One approach:

- Try a few values of n to see if they work.
$-\operatorname{Try~n}=5$. SQ(n) $=0+1+4+9+16+25=55$
- Closed-form expression: $5 * 6 * 11 / 6=55$
- Works!
- Try some more values....
- Problem: we can never prove validity of closedform solution for all values of n this way since there are an infinite number of values of n.

To solve this problem, let us express $\mathrm{SQ}(\mathrm{n})$ in another way.

$$
\mathrm{SQ}(\mathrm{n})=\frac{0^{2}+1^{2}+\ldots+(\mathrm{n}-1)^{2}}{\mathrm{SQ}(\mathrm{n}-1)}+\mathrm{n}^{2}
$$

This leads to the following recursive definition of SQ:

$$
\begin{aligned}
& \mathrm{SQ}(0)=0 \\
& \mathrm{SQ}(\mathrm{n})=\mathrm{SQ}(\mathrm{n}-1)+\mathrm{n}^{2} \left\lvert\, \mathrm{n}>0 \quad \begin{array}{l}
\text { Vertical bar } \mid \text { means }
\end{array} \quad\right. \text { "whenever" }
\end{aligned}
$$

To get a feel for this definition, let us look at

$$
\begin{aligned}
\mathrm{SQ}(4) & =\mathrm{SQ}(3)+4^{2}=\mathrm{SQ}(2)+3^{2}+4^{2}=\mathrm{SQ}(1)+2^{2}+3^{2}+4^{2} \\
& =\mathrm{SQ}(0)+1^{2}+2^{2}+3^{2}+4^{2}=0+1^{2}+2^{2}+3^{2}+4^{2}
\end{aligned}
$$

Can we show that these two definitions of $\operatorname{SQ}(\mathrm{n})$ are equal?
$\mathrm{SQ}_{\mathrm{r}}(0)=0$
$\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{r}}(\mathrm{n}-1)+\mathrm{n}^{2} \mid \mathrm{n}>0$
r: recursive
$\mathrm{SQ}_{\mathrm{c}}(\mathrm{n})=\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1) / 6$
c: closed-form

Recursive case

Better argument

- Argument:
- Domino 0 falls because we push it over (base case).
- Assume that domino k falls over (inductive hypothesis).
- Because domino k's length is larger than inter-domino spacing, it will knock over domino $\mathrm{k}+1$ (inductive step).
- Because we could have picked any domino to be the $\mathrm{k}^{\text {th }}$ one, we conclude that all dominoes will fall over (conclusion).
- This is an inductive argument.
- This is called weak induction. There is also strong induction (see later).
- Not only is it more compact, but it works even for an infinite number of dominoes!

Weak induction over integers

- We want to prove that some property P holds for all integers $\mathrm{n} \geq 0$.
- Inductive argument:
$-\mathrm{P}(0)$: (base case) show that property P is true for 0
$-\mathrm{P}(\mathrm{k})$: (inductive hypothesis) assume that $\mathrm{P}(\mathrm{k})$ is true for a particular integer k.
$-P(k)=>P(k+1)$: (inductive step) show that if property P is true for integer k, it is true for integer $k+1$
- $\mathrm{P}(\mathrm{n})$: (conclusion) Because we could have picked any k , this means $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq 0$.

$$
\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n}) \text { for all } \mathrm{n} ?
$$

Define $P(n)$ as $\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=S Q_{\mathrm{c}}(\mathrm{n})$

Prove $\mathrm{P}(0)$.
Assume $\mathrm{P}(\mathrm{k})$ for particular k .
Prove $\mathrm{P}(\mathrm{k}+1)$ assuming $\mathrm{P}(\mathrm{k})$.
Let $\mathrm{P}(\mathrm{n})$ be the proposition that $\mathrm{SQ}_{\mathrm{r}}(\mathrm{n})=\mathrm{SQ}_{\mathrm{c}}(\mathrm{n})$.
Proof by induction:
$P(0)$: show $\mathrm{SQ}_{\mathrm{r}}(0)=\mathrm{SQ}_{\mathrm{c}}(0)$

$$
\text { (easy) } \mathrm{SQ}_{\mathrm{r}}(0)=0=\mathrm{SQ}_{\mathrm{c}}(0)
$$

Assume $\operatorname{SQr}(\mathrm{k})=\mathrm{SQc}(\mathrm{k})$
Prove that $P(k)=P(k+1)$:
Inductive ste
$\mathrm{SQ}_{\mathrm{r}}(\mathrm{k}+1)=\mathrm{SQ}_{\mathrm{r}}(\mathrm{k})+(\mathrm{k}+1)^{2}$
$=\mathrm{SQ}_{\mathrm{c}}(\mathrm{k})+(\mathrm{k}+1)^{2} \quad$ (inductive hypothesis)
$=\mathrm{k}(\mathrm{k}+1)(2 \mathrm{k}+1) / 6+(\mathrm{k}+1)^{2} \quad$ (definition of $\left.\mathrm{SQ}_{2}\right)$
$=(k+1)(k+2)(2 k+3) / 6 \quad$ (algebra)
$=S Q_{c}(k+1) \quad$ (definition of $\left.\mathrm{SQ}_{2}\right)$
Therefore, $\operatorname{SQr}(\mathrm{n})=\mathrm{SQc}(\mathrm{n})$ for all integers n . Conclusion

Another example of weak induction

Prove that the sum of the first n integers is $\mathrm{n}(\mathrm{n}+1) / 2$.
Let $S(i)=0+1+2+\ldots+i$
Show that $S(n)=n(n+1) / 2$.

- Base case: $(n=0)$ - $S(0)=0$
- Inductive hypothesis:
- Assume $S(k)=k(k+1) / 2$ for a particular k .
- Inductive step:
$-S(k+1)=0+1+\ldots+k+(k+1)=S(k)+(k+1)$
$=k(k+1) / 2+(k+1)$
$=(k+1)(k+2) / 2$
- Therefore, if result is true for k, it is true for $k+1$.
- Conclusion: result follows for all integers.
- Note: we did not use arithmetic progressions theory.

Essence of proof is the following recursive description of $S(k)$

```
S(0)=0
S(k)=S(k-1)+k|k>0
```


In some problems, we are interested in showing some proposition is true for integers greater than or equal to some lower bound (say b)

- Intuition: we knock over domino b, and dominoes in front get knocked over. Not interested in dominoes $0,1, \ldots,(b-1)$.
- In general, base case in induction does not have to be 0 .
- If base case is some integer b, induction proves proposition for $n=b, b+1, b+2, \ldots$.
- Does not say anything about $n=0,1, \ldots, b-1$

Weak induction: non-zero base case

- We want to prove that some property P holds for all integers $n \geq b$
- Inductive argument:
$-P(b)$: show that property P is true for integer b
$-P(k)$: assume that $P(k)$ is true for a particular integer k.
$-P(k)=P(k+1)$: show that if property P is true for integer k, it is true for integer $k+1$
$-P(n)$: Because we could have picked any k, this means $\mathrm{P}(\mathrm{n})$ holds for all integers $\mathrm{n} \geq \mathrm{b}$.

More on induction

- In some problems, it may be tricky to determine how to set up the induction:
- What are the dominoes?
- This is particularly true in geometric problems that can be attacked using induction.

- Problem:
- A chess-board has one square cut out of it.
- Can the remaining board be tiled using tiles of the shape shown in the picture?
- Not obvious that we can use induction to solve this problem.

Idea

- Consider boards of size $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ for $\mathrm{n}=1,2, \ldots$.
- Base case: show that tiling is possible for 2×2 board.
- Inductive hypothesis: assume $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ board can be tiled
- Inductive step: assuming $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ board can be tiled, show that $2^{\mathrm{k}+1} \times 2^{\mathrm{k}+1}$ board can be tiled.
- Draw conclusion
- Chess-board (8x8) is a special case of this argument
- We have proved special case of chess-board by proving generalized problem!

Inductive proof

- Claim: Any board of size $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ with one missing square can be tiled.
- Proof: by induction.
- Base case: $(\mathrm{n}=1)$ trivial since board with missing piece is isomorphic to tile.
- Inductive hypothesis: board of size $2^{\mathrm{k}} \times 2^{\mathrm{k}}$ can be tiled
- Inductive step: consider board of size $2^{k+1} \times 2^{k+1}$
- Divide board into four equal sub-boards of size $2^{k} \times 2^{k}$
- One of the sub-boards has the missing piece; by inductive hypothesis, this can be tiled.
- Tile the central squares of the remaining three sub-boards as discussed before.
- This leaves three sub-boards with a missing square each, which can be tiled by inductive hypothesis.
- Conclusion: any board of size $2^{\mathrm{n}} \times 2^{\mathrm{n}}$ with one missing square can be tiled.

When induction fails

- Sometimes, an inductive proof strategy for some proposition may fail.
- This does not necessarily mean that the proposition is wrong.
- It just means that the inductive strategy you are trying fails.
- A different induction or a different proof strategy altogether may succeed.

Tiling example (contd.)

- Let us try a different inductive strategy which will fail.
- Proposition: any $n x n$ board with one missing square can be tiled.
- Problem: a $3 x 3$ board with one missing square has 8 remaining squares, but our tile has 3 squares. Tiling is impossible.
- Therefore, any attempt to give an inductive proof is proposition must fail.
- This does not say anything about the 8×8 case.

Strong induction

- We want to prove that some property P holds for all integers.
- Weak induction:
- $\mathrm{P}(0)$: show that property P is true for integer 0
- Assume $P(k)$ for a particular integer k.
- $P(k)=>P(k+1)$: show that if property P is true for integer k, it is true for $\mathrm{k}+1$
- Conclude that $\mathrm{P}(\mathrm{n})$ holds for all integers n .
- Strong induction:
$-P(0)$: show that property P is true for integer 0
- Assume $\mathrm{P}(0)$ and $\mathrm{P}(1) \ldots$ and $\mathrm{P}(\mathrm{k})$ for particular k .
- $P(0)$ and $P(1)$ and \ldots and $P(k) \Rightarrow P(k+1)$: show that if P is true for integers less than or equal to k, it is true for $k+1$
- Conclude that $\mathrm{P}(\mathrm{n})$ holds for all integers n .
- For our purpose, both proof techniques are equally powerful.

Editorial comments

- Induction is a powerful technique for proving propositions.
- We used recursive definition of functions as a step towards formulating inductive proofs.
- However, recursion is useful in its own right.
- There are closed-form expressions for sum of cubes of natural numbers, sum of fourth powers etc. (see any book on number theory).

