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Induction

Overview
• Recursion

– a strategy for writing programs that compute in a 
“divide-and-conquer” fashion

– solve a large problem by breaking it up into smaller 
problems of same kind

• Induction
– a mathematical strategy for proving statements about 

integers (more generally, about sets that can be ordered 
in some fairly general ways)

• Understanding induction is useful for figuring out 
how to write recursive code. 

Defining Functions
• It is often useful to write a given function in 

different ways.
– (eg) Let  S:int int be a function where S(n) 

is the sum of the natural numbers from 0 to n.
S(0) = 0, S(3) = 0+1+2+3 = 6

– One definition: iterative form
• S(n) = 0+1+…+n

– Another definition: closed-form
• S(n) = n(n+1)/2

Equality of function definitions

• How would you prove the two definitions of 
S(n) are equal?
– In this case, we can use fact that terms of series 

form an arithmetic progression.
• Unfortunately, this is not a very general 

proof strategy, and it fails for more complex 
(and more interesting) functions.
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Sum of Squares Functions

• Here is a more complex example.
– (eg) Let SQ:int int be a function where SQ(n) is the 

sum of the squares of natural numbers from 0 to n.

SQ(0) = 0, SQ(3) = 02+12+22+32 = 14
• One definition:

– SQ(n) = 02+12+…+n2

• Is there a closed-form expression for SQ(n)?

Closed-form expression for SQ(n)

• Sum of natural numbers up to n was n(n+1)/2 
which is a quadratic in n.

• Inspired guess: perhaps sum of squares on natural 
numbers up to n is a cubic in n.

• So conjecture: SQ(n) = a.n3+b.n2+c.n+d where 
a,b,c,d are unknown coefficients.

• How can we find the values of the four 
unknowns?
– Use any 4 values of n to generate 4 linear equations, 

and solve.

• Let us use n=0,1,2,3.
• SQ(0) =   0 = a.0  + b.0 + c.0 +d
• SQ(1) =   1 = a.1  + b.1 + c.1 + d
• SQ(2) =  5 = a.8  + b.4 + c.2 + d
• SQ(3) = 14 = a.27 + b.9 + c.3 +d
• Solve these 4 equations to get

a = 1/3, b = ½, c = 1/6, d = 0

Finding coefficients
SQ(n) = 02+12+…+n2 = a.n3+b.n2+c.n+d

• This suggests 
SQ(n) = 02+12+…+n2 

= n3/3  + n2/2   + n/6
= n(n+1)(2n+1)/6

• Question: How do we know this closed-form 
solution is true for all values of n?
– Remember, we only used n = 0,1,2,3 to determine these 

co-efficients. We do not know that the closed-form 
expression is valid for other values of n.
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• One approach:
– Try a few values of n to see if they work.
– Try n = 5. SQ(n) = 0+1+4+9+16+25 = 55
– Closed-form expression: 5*6*11/6 = 55
– Works!
– Try some more values….

• Problem: we can never prove validity of closed-
form solution for all values of n this way since 
there are an infinite number of values of n.

To solve this problem, let us express SQ(n) in another way.

SQ(n) = 02 + 12 + … + (n-1)2 + n2

SQ(n-1)

SQ(0) = 0

SQ(n) = SQ(n-1) + n2 | n > 0

This leads to the following recursive definition of SQ:

To get a feel for this definition, let us look at 

SQ(4) = SQ(3) + 42 = SQ(2) + 32 + 42 = SQ(1) + 22 + 32 + 42 

= SQ(0) + 12 + 22 + 32 + 42 = 0 + 12 + 22 + 32 + 42 

Vertical bar | means 
“whenever”

SQ(0) = 0
SQ(n) = SQ(n-1) + n2 | n > 0

Notation for recursive functions

Base case

Recursive case

SQr(0) = 0
SQr(n) = SQr(n-1) + n2 | n > 0

SQc(n) = n(n+1)(2n+1)/6

Can we show that these two definitions of SQ(n) are equal?

r: recursive

c: closed-form
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Dominoes

• Assume equally spaced dominoes, and assume that spacing 
between dominoes is less than domino length.

• How would you argue that all dominoes would fall?
• Dumb argument:

– Domino 0 falls because we push it over.
– Domino 1 falls because domino 0 falls, domino 0 is longer than 

inter-domino spacing, so it knocks over domino 1.
– Domino 2 falls because domino 1 falls, domino 1 is longer than 

inter-domino spacing, so it knocks over domino 2.
– ……

• Is there a more compact argument we can make?

0 1 2 3 54

Better argument
• Argument:

– Domino 0 falls because we push it over (base case).
– Assume that domino k falls over (inductive hypothesis). 
– Because domino k’s length is larger than inter-domino spacing, it 

will knock over domino k+1 (inductive step).
– Because we could have picked any domino to be the kth one, we 

conclude that all dominoes will fall over (conclusion).
• This is an inductive argument.
• This is called weak induction. There is also strong 

induction (see later).
• Not only is it more compact, but it works even for an 

infinite number of dominoes!

Weak induction over integers
• We want to prove that some property P holds for 

all integers n > 0 .
• Inductive argument:

– P(0): (base case) show that property P is true for 0
– P(k): (inductive hypothesis) assume that P(k) is true for 

a particular integer k.
– P(k) => P(k+1): (inductive step) show that if property P 

is true for integer k, it is true for integer k+1
– P(n): (conclusion) Because we could have picked any k, 

this means P(n) holds for all integers n > 0 .

SQr(n) = SQc(n) for all n?

Prove P(0).

Assume P(k) for particular k.

Prove P(k+1) assuming P(k).

P(0) P(1) P(2) P(k) P(k+1)

Define  P(n) as SQr(n)= SQc(n)



5

SQc(n) = n(n+1)(2n+1)/6
SQr(0) = 0

SQr(n) = SQr(n-1) + n2

P(0):  show SQr(0) = SQc(0)

(easy) SQr(0) = 0 = SQc(0)

Assume SQr(k) = SQc(k)

Prove that P(k) => P(k+1):

SQr(k+1) = SQr(k) + (k+1)2                            (definition of SQ1)

= SQc(k) + (k+1)2 (inductive hypothesis)

= k(k+1)(2k+1)/6  + (k+1)2    (definition of SQ2)

=(k+1)(k+2)(2k+3)/6           (algebra)

= SQc(k+1)                            (definition of SQ2)

Therefore, SQr(n) = SQc(n) for all integers n. Conclusion

Let  P(n) be the proposition that SQr(n) = SQc(n).

Proof by induction:

Base case

Inductive hypothesis

Inductive step

Another example of weak induction
Prove that the sum of the first n integers is n(n+1)/2.

• Base case: (n=0)
– S(0) = 0

• Inductive hypothesis:
– Assume S(k) = k(k+1)/2 for a particular k.

• Inductive step:
– S(k+1) = 0 + 1 + … + k +(k+1)= S(k) + (k+1)

= k(k+1)/2 + (k+1)
= (k+1)(k+2)/2 

– Therefore, if result is true for k, it is true for k+1.
• Conclusion: result follows for all integers.
• Note: we did not use arithmetic progressions theory.

Let S(i) = 0+1+2+…+i

Show that S(n) = n(n+1)/2.

Essence of proof is the following recursive description of  S(k)

S(0)  = 0
S(k)  = S(k-1) + k  | k>0

Note on base case 

• In some problems, we are interested in showing some 
proposition is true for integers greater than or equal to 
some lower bound (say b)

• Intuition: we knock over domino b, and dominoes in front 
get knocked over. Not interested in dominoes 0,1,…,(b-1).

• In general, base case in induction does not have to be 0.
• If base case is some integer b, induction proves proposition 

for n = b,b+1,b+2,….
• Does not say anything about n = 0,1,…,b-1

0 1 2 3 54
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Weak induction:
non-zero base case

• We want to prove that some property P holds for 
all integers n > b

• Inductive argument:
– P(b): show that property P is true for integer b
– P(k): assume that P(k) is true for a particular integer k.
– P(k) => P(k+1): show that if property P is true for 

integer k, it is true for integer k+1
– P(n): Because we could have picked any k, this means

P(n) holds for all integers n > b .

More on induction

• In some problems, it may be tricky to 
determine how to set up the induction:
– What are the dominoes?

• This is particularly true in geometric 
problems that can be attacked using 
induction. 

Tiling problem

• Problem:
– A chess-board has one square cut out of it. 
– Can the remaining board be tiled using tiles of the shape shown in 

the picture?
• Not obvious that we can use induction to solve this 

problem.

8

8

1
2

Idea
• Consider boards of size 2n x 2n for n = 1,2,…..
• Base case: show that tiling is possible for 2 x 2 board.
• Inductive hypothesis: assume 2k x 2k board can be tiled
• Inductive step: assuming 2k x 2k board can be tiled, show 

that 2k+1 x 2k+1 board can be tiled.
• Draw conclusion

– Chess-board (8x8) is a special case of this argument
– We have proved special case of chess-board by proving 

generalized problem!



7

Base case

• For a 2x2 board, it is is trivial to tile the board 
regardless of which one of the four pieces has 
been cut. 

2x2 board

4x4 case

• Divide 4x4 board into four 2x2 sub-boards. 
• One of the four sub-boards has the missing piece.
• That sub-board can be tiled since it is a 2x2 board with a 

missing piece.
• Tile the center squares of the three remaining sub-boards 

as shown. 
• This leaves 3 2x2 boards with a missing piece, which can 

be tiled.

8x8 case

• Divide board into 4 sub-boards and tile the center 
squares of the three complete sub-boards.

• The remaining portions of the 4 sub-boards can be 
tiled by assumption about 4x4 boards.

Inductive proof
• Claim: Any board of size 2n x 2n with one missing 

square can be tiled.
• Proof: by induction.

– Base case: (n = 1) trivial since board with missing piece 
is isomorphic to tile.

– Inductive hypothesis: board of size 2k x 2k can be tiled
– Inductive step: consider board of size 2k+1x 2k+1

• Divide board into four equal sub-boards of  size 2k X 2k

• One of the sub-boards has the missing piece; by inductive 
hypothesis, this can be tiled.

• Tile the central squares of the remaining three sub-boards as 
discussed before.

• This leaves three sub-boards with a missing square each, which 
can be tiled by inductive hypothesis.

– Conclusion: any board of size 2n x 2n with one missing 
square can be tiled.
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When induction fails

• Sometimes, an inductive proof strategy for 
some proposition may fail.

• This does not necessarily mean that the 
proposition is wrong.
– It just means that the inductive strategy you are 

trying fails.
• A different induction or a different proof 

strategy altogether may succeed.

Tiling example (contd.)

• Let us try a different inductive strategy which will 
fail.

• Proposition: any n x n board with one missing 
square can be tiled.

• Problem: a 3 x 3 board with one missing  square 
has 8 remaining squares, but our tile has 3 squares. 
Tiling is impossible. 

• Therefore, any attempt to give an inductive proof 
is proposition must fail.

• This does not say anything about the 8x8 case.

Strong induction
• We want to prove that some property P holds for all 

integers.
• Weak induction:

– P(0): show that property P is true for integer 0
– Assume P(k) for a particular integer k.
– P(k) => P(k+1): show that if property P is true for integer k, it is 

true for k+1
– Conclude that P(n) holds for all integers n.

• Strong induction:
– P(0): show that property P is true for integer 0
– Assume P(0) and P(1) …and P(k) for particular k.
– P(0) and P(1) and …and P(k) => P(k+1): show that if P is true for 

integers less than or equal to k, it is true for k+1
– Conclude that P(n) holds for all integers n.

• For our purpose, both proof techniques are equally 
powerful. 

Editorial comments

• Induction is a powerful technique for proving 
propositions.

• We used recursive definition of functions as a step 
towards formulating inductive proofs.

• However, recursion is useful in its own right.
• There are closed-form expressions for sum of 

cubes of natural numbers, sum of fourth powers 
etc. (see any book on number theory).


