
1

Java boot camp 1

Subclasses

Concepts:

¥ The subclass and inheritance: subclass B of
class A inherits fields and methods from A.
A is a superclass of B. Keyword extends is
used to define a subclass.

¥ Using the constructor of a superclass.

¥ Access modifier protected

¥ Overriding methods

Readings from Weiss:

classes, etc.: Sections 3.1-3.5

subclasses: Section: 4.1-4.2

packages: Section 3.6

Java boot camp 2

// An instance of Employee contains a person’s name,

// salary, and year hired. It has a constructor and

// methods for raising the salary, printing the data, and

// retrieving the person’s name and the year hired.

public class Employee {

 private String name; // The person’s name

 private double pay; // The person’s yearly salary

 private int hireDate; // The year hired

 // Constructor: a person with name n, salary s, and

 // year d hired

 public Employee(String n, double s, int d) {

 name= n;

 pay= s;

 hireDate= d;

 }

 // = the person’s name

 public String getName()

 {return name;}

Class Employee

2

Java boot camp 3

Class Employee, continued

 // Raise this Employee s salary by p perce nt
 public void raiseSalary(double p)
 {pay= pay * (1 + p/100.0);}

 // = this Employee s pay
 public double getPay()
 { return pay; }

 // = the year this Employee was hired
 public int getHireDate()
 {return hireDate;}

// = a String containing the data for this Employee
 public String toString() {
 return name + " " +
 pay + " " +
 hireDate;
 }
}

Java boot camp 4

Modify class Employee to take into account
three different kinds:

¥ VIPS (e.g. CEO, president, vice president):
Need a field bonus, since VIPS get (big)
bonuses. Get a yearly salary.

¥ Salaried: Expected to work overtime
whenever necessary, without extra pay.

¥ Regular: Time cards! Have an hourly
wage instead of a yearly salary. (Need also
to record the number of hours worked on
each day, but we ll f orego that here and
assume 40 hours per week.

Our task

3

Java boot camp 5

Subclass VIP

// An instance of VIP contains a VIP’s data

public class VIP extends Employee {

 private double bonus; // The VIP’s bonus

 // Constructor: a VIP with name n, year d hired,

 // yearly pay s, and bonus b

 public VIP(String n, int d, double s, double b) {

 super (n, s, d);

 bonus= b;

 }

 // = a String containing the data for this VIP

 public String toString() {

 return VIP + getName() + + getPay() +

 + getHireDate() + + bonus;

 }

 // Change this VIP s bonus to b

 public void changeBonus(double b)

 {bonus= b;}

}

Java boot camp 6

An instance of class VIP has every field and method that
an instance of class Employee does, plus the ones that are
declared in VIP.

Employee x; new Employee(Grie s , 1969);

Employee y= new VIP(Hall ,1994, 90000,1000);

x a0

y a1

Employee

name Gries pay 0

hireDate 1969 Employee, hireYear,
getName, getPay, toString.
raiseSalary, getHireDate

Employee

name Hall pay 90000

hireDate 1994 Employee, hireYear,
getName, getPay, toString
raiseSalary, getHireDate

bonus 10000
VIP, toString, changeBonus

VIP

a0

a1

4

Java boot camp 7

// An instance of Salaried contains a salaried person s data

public class Salaried extends Employee {

 // Constructor: instance with name n, hire date d, yearly

 // pay s

 public Salaried(String n, double s, int d, double b)

 { super (n, s, d); }

 // = a String containing the data for the person

 public String toString()

 { return Salari ed + super.toString(); }

 // = yearly pay

 public double getPay()

 { return super.getPay(); }

}

Important points:

(1) Overriding a method of the superclass.

(2) Calling a constructor of the superclass.

(3) calling other methods of the superclass.

Java boot camp 8

// An instance of Hourly contains an hourly person s data

public class Hourly extends Employee {

 // private double hourlyPay; // pay for one hour

 // private int numHours; // no. hours worked in year

 /* Try writing suitable methods to finish this class. You
need a suitable constructor, methods to access private
fields, a toString method, and function getPay.

 Your constructor should initialize the inherited

 fields correctly!!! (to the product of hourlyPay and

 numHours).

 Place all four classes --Employee, VIP, Salaried, and
Hourly-- into files and compile them in a Java project,
so that you can get the syntax bugs out of your code.

 */

}

5

Java boot camp 9

Use of protected

A public field of Employee can be referenced
from anywhere.

A private field can be referenced only from
instances of Employee.

A protected field can be referenced only in the
same package and in subclasses.

A field without a modifier can be referenced
only in the same package.

Packages are not discussed now!

For now, use protected for instance variables
that you want a subclass to be able to
reference.

Java boot camp 10

Referencing methods

VIP y;

y= new VIP(Hall , 1983, 90000, 1000);

y.getName() refers to method getName of its superclass,
Employee. This is because getName is not defined in
VIP.

y.getBonus() refers to method getBonus of VIP. This is
because getBonus is defined in VIP.

y.toString() refers to method toString of VIP. This is
because toString is defined in VIP.

Method toString of superclass Employee has been
overridden in class VIP.

Rule: When looking for a nonstatic method in an
instance, start at the bottom of the instance and search
upwards. In other words, the method called is the lowest
one in the class hierarchy in the instance.

6

Java boot camp 11

Calling an overridden method
public class VIP {

 private double bonus; // ...

 // = a String containing the data for this VIP

 public String toString() {

 return VIP + getName () + + getPay() +

 + getHire Date() + + bonus;

 }

There is already toString in superclass Employee.
How to call it?

 // = a String containing the data for this VIP

 public String toString() {

 return VIP + super.toString() + + bonus;

 }

To call an overridden method, prefix the method name
with

super.

Principle: rely as much as possible on fields and
methods of the superclass.

Java boot camp 12

Summary of this

Assume an instance a0 of some class contains a method
m. Within the body of m: this refers to instance a0.

(0) You can precede a reference to any field or method
by this . , without chan ging its meaning:

 this.toString() is equivalent to toString()

 Also: // Set this Employee s pay to pay

 public void setPay(double pay)

 { this.pay= pay; }

(1) You can use this as an argument, to pass the name
a0 as an argument:

 bigger(this, e)

(2) You can use this to refer to another constructor:

 // Constructor: an Employee with name n, pay d,

 // and hire date 2001

 public Employee(String n, double d)

 { this (n, d, 2000); }

7

Java boot camp 13

Summary of super

Assume an instance of some subclass C contains a
method m. Within the body of m:

super refers to the superclass of C.

(0) You can precede a reference to a method by
super . to refer to the method of the superclass (instead

of the overriding method toString in C, if there is one).
This is a way to override the overriding method.

 super.toString()

(2) You can use super to refer to a constructor of the
superclass, to initialize the fields of the superclass:

 // Constructor: a VIP with name n, pay d,

 // hire date 2001, and bonus b

 public VIP(String n, double d, int b) {

 super(n, d, 2001);

 bonus= b;

 }

Java boot camp 14

Class Object; the class hierarchy

Class Object is automatically the superclass of all
classes that don t exte nd anything. In our example, we
have:

Object

Employee

VIP

Salaried

Regular

Class object has (at least) two methods

// = thi s Object has the same name as b

// (we give a possible implementation)

public boolean equals(Object b) {

if (b == null)

return false;

return this == b;

}

// = a String representation of this Object

public String toString()

