Java Program Style and Design - Continued

e Program Design Concepts:

+ Design Patterns

+ Refinement

« Abstractions - Program Conceptualization

— Object-oriented programming and abstraction

+ Pseudo-code: abstraction and refinement
Today:

¢ JavaDoc

+ Software Lifecycle

+ UML - Unified Modeling Language

Matthew Morgenstern 1 CS211 Class - Sept. 7, 2000

JavaDoc - Java APl Documentation Generator

javadoc <sourcefiles.java> *

e Parses the declarations and documentation comments in a set
of Java source files

e Produces a set of HTML pages describing public and protected
classes, interfaces, constructors, methods, and fields.

+ One .html file for each .java file and each package

« Class hierarchy (tree.html) & index of members (AllNames.html)
+ Includes class and member signatures.
*

You can add further documentation by including doc / * *

comments in the source code - may include html tags
/ * %

* This is a doc coment.
*/
+ Doc comments only recognized immediately before class,
interface, constructor, method, or field declarations.

Matthew Morgenstern 2 CS211 Class - Sept. 7, 2000

09/08/2000 12:26

JavaDoc - 2

e First sentence of each doc comment should be a sum-
mary sentence - for method summary at top of html file.

e javadoc parses special tags within a Javadoc comment.
These doc tags enable you to autogenerate a complete, well-
formatted API from your source code. The tags start with "at"
sigh (@):

¢ @aram paranet er-nane description

@eturn description

@xception fully-qualified-class-name description

@ut hor nane-text

@ersion version-text

@ee cl assnane:
Adds a hyperlinked "See Al so" entry to the class.

¢ Class, method, and Field doc comments supported.
e http://java.sun.com/products/jdk/1.1/docs/tooldocs/win32/javadoc.html

* 6 6 o o

Matthew Morgenstern 3 CS211 Class - Sept. 7, 2000

An example of a method doc comment
/**

* Returns the character at the specified index. An index

* ranges from <code>0</code> to <code>length() - 1</code>.
*

* @param index the index of the desired character.

* @return the desired character.

* @exception StringlndexOutOfRangeException

* if the index is not in the range <code>0</code>
* to <code>length()-1</code>.

* @see java.lang.Character#charValue()

*/

public char charAt(int index) {

}

For Java API - JavaDoc output see:
http://java.sun.com/products/jdk/1.2/docs/api/index.html

Matthew Morgenstern 4 CS211 Class - Sept. 7, 2000

09/08/2000 12:26

~| Metscape: Java Platform 1.2 AF| Specification Overview page 1]
File Edit ‘iew Go Communicator G

d & 3 & » W = &

Back. Foreard Reload Home Search Metscape Print Security Stop
w§ " Bookmarks i Location; http://webwork. eng/products/jdk/1.2/do: {| 517 What's Related

o wentral 5% F Admin 05 Apps 0 javasuncom 42 12Docs 12 APL o HoFr o 12Prd. 12 APLLfes 5 00

Java Platform 1-| | [EEETE Package Class Use Tree Deprecated Index Help Jave Plafform 7.2 |—
|

Al Slasaes FREV NEXT FRAMES MO FRAMES

Pack:
javs. apler Java™ Platform 1.2 API Specification

Java. awt
jawva. awt. color This document is the specification for the Java Platform core APL
e, anwt, datatranst
java. anwt. dnd See:

java. awt event Description

Core Packages

All Classes
AbstractAction Provides the classes necessary to create an

AbstractBorder java.applet appler and the cdasses an applet uses tw
AbstractButton cornrnicate with its applet context.
Wm Contaans all of the classes for creating user
“AbetractDy o cument | java.awt g::xf::es and for painting graphics and
Abstract Doyt - ges:
Abstract Docunent, java.awt .color Provides classes for color spaces.
ig:g:g; cg.;ntén;. Provides interfaces and classes for
java.awt . datatransfer transferring data between and within

Abstractl ayoutCac
Abstractlist applications.

= MNetscape: |lava FPlatform 1.2 AaFl specification: Packages |2
File Edit ‘iew Go Communicator

Back Forward Reload Horne Search Metscape Prirt Securty Stop
¥ ~ Bookmarks & Location: fhttpi//webwork.eng /products/idk/1.2/docs/apisiavasapplet/pa: /|
o wcentral CF & 0 Admin [javasuncom ¢ 1.2 Docs @ 1.2 AP ¢ MoFr @ 12 Prod. (4§ JDK AP Specs [javado

Ooverview [EEEIENEN Class Use Tree Deprecated Index Help Fev Plectform 1.2 | —

FREU PACKAGE HEXT PACKAGE ERAMES MO FRAMES

Package page |

Package java.applet
Provides the classes necessary to create an applet snd the classes sn applet uses to communicate with its

applet contesxt.

See:
Description

Interface Summary
This interface corresponds to an applet’s environment: the docurmnent containing the
ApplesCortesdt .

applet and the other applets in the same docurment.

et When an applet is Hrst created, an applet stub is attached to it using the applet's setStub
R method.

Azecin Clir The Audioc]ip interface is @ simple sbstracton for playing a sound clip.

Class Summary
i.An applet is a small program that is intended not to be run on its ovwn, but rather to be
Applet ‘embedded nside another appliceation.

Package java.applet Description
Provides the classes necessary to create an applet and the classes an applet uses to communicate with its
applet context.

The spplet framework involves two entities: the appler and the appler conrexs. An sppletis an embeddable
windovwr (see the Panel class) with a few extra methods that the applet context can use to initislize, start,

and stop the applet.

The spplet contestis an application that is responsible for loading and running spplets. For example, the
spplet context could be a Web browser or an applet dewelopment environrment

e e e |

09/08/2000 12:26

Classic ‘Waterfall’ Lifecycle

Waterfall model stages in the software development process are seen to

R equirem ent=

cascade down from one to another.

Is project technically, operationally, financially & legally feasible ?

Gather and Analyze the requirements for the system

Designs are translated into code

Module Tests

Aralysis
Architectural
Design
. . Dretailed
* Architectural high) .
) g Cresian Implementation:

level design (what

programs are we going to Cpaeand

need & how will they interact),

. Software

* Interface design (what are the It egration

interfaces going to look like),

* Detailed low level design (how the
individual programs are going to

work),

+ Data design (what data are we

going to need).

Matthew Morgenstern

Irit egration

System Tests

Acceptance
Test

Add extra things &/or change | Operation &

existing things over time.

CS211 Class -

Maintence

Sept. 7, 2000

Features of waterfall
model

Systematic and linear approach towards
software development

each phase is distinct .

Design and implementation phase only
after analysis is over

proper feedback, to minimize the rework

Matthew Morgenstern

CS211 Class -

Sept. 7, 2000

09/08/2000 12:26

Weaknesses of waterfall
model

Difficult for the customer to state all the
requirements in advance

difficult to estimate the resources , with
the limited information

actual feedback is always after the system
is delivered

changes are not anticipated

Matthew Morgenstern 9 CS211 Class - Sept. 7, 2000

eneraliz ation/
re-eraluation

eneraliz ation/
re-ewaluation

Note
Gl o
Cormporne ot feedback at
design
each stage

The FOUNTAIN Model for an individual class or a subsystem

v A

09/08/2000 12:26

Iterative Lifecycle Model

“Producing software by successive refinement”
Spiral Development emphasizes iterative phases

Start

Irmplementation
f & Test

Complete

Matthew Morgenstern 11 CS211 Class - Sept. 7, 2000

Unified Modeling Language (UML)

¢ One of the main goals of system modeling is to
+ partition a system into cohesive components
+ that have stable interfaces, creating a

+ core that need not change in response to subsystem-level
changes

o UML was developed by Grady Booch, James
Rumbaugh, and Ivar Jacobson

Matthew Morgenstern 12 CS211 Class - Sept. 7, 2000

09/08/2000 12:26

UML Modeling Techniques for Development Process

<User requirements Analysis Design Eu@
1+
1 l_| We focus on:
Use Case Component Class Stkchart
. . . o .
Diagram Diagram Diagram Diagram
r
Sequence Source
L —'
e Diagram Code
Deployment Collaboration
Diagram Diagram
Matthew Morgenstern 13 CS211 Class - Sept. 7, 2000

UML Modelling Diagrams

e Use case diagrams: external interaction with system:
« Enroll students in courses; ¢ Produce student transcripts.

o Class diagrams: object models, classes & their interrelationships:
+ including inheritance, aggregation, and associations, * Object diagrams

e Sequence / object-interaction diagrams: event-trace diagram:
+ defines the logic of how objects interact; e.g. in a use case scenario.

¢ Component diagrams: show the software components used:
¢ shows their dependencies, interfaces, and interrelationships.

o Deployment diagrams: configuration of run-time processing units
including the hardware and software.

e Statechart diagrams: represent states in the behavior of an object:
+ shows events which cause transitions betwn stages & resulting actions.

e Collaboration diagrams: show the message flow between objects:
+ implies the basic associations between objects in an O-O application.
http://www.sdmagazine.com/uml/focus.ambler.htm , http://www.rational.com/uml/index.jsp

Matthew Morgenstern 14 CS211 Class - Sept. 7, 2000

09/08/2000 12:26

UML Class Diagram

1.." describes 1.

Contact Point Type

Business |1..™ has 1.."|Contact Point
Entity abskact
send o
label info

Shipping Address

T~

descriplion
label info

abstract Phone Humber
/ “\ number
call

Electvanic Address Swface Address send tu
address street label iufo
send o0 city
labhel info state

counky

zip

send 1

lahel iwfo
Matthew Morgenstern 15 CS211 Class - Sept. 7, 2000

CLASS DIAGRAM Shows the existence of classes and their relationships
in the logical view of a system

Class (lass Name

Class Name
atiribute
atfribute : data_type
atfribute : data_type = init_value

aperation
operation {arq_list) : resul_type

Matthew Morgenstern

Parameterized class

tamplata nama

tamplate definition

template name <actual arguments:

class instantiated
from template

16 CS211 Class -

Sept. 7, 2000

09/08/2000 12:26

Association classes

Role names & derived association

Association Name . Association Name
(lass-1 I Class-2 Class1 P el Elalss-I
| .
; fderivedt assoriation
ass0ciafion
tlass name . _
. onstraint
atribute |
- Clags1 al Clags 2
Operation)
' {cqn:irtraint} .
Qualified Association
m lds‘sam’atfonﬂame al 0.* [{arderad)
Class-1 | qualifier el el (lags-2
Matthew Morgenstern 17 CS211 Class - Sept. 7, 2000
Agaregation, navigability, and multiplicity
Whole Class Name
1,1 aogregation, composite aggregation,
unidirectional hidirachonal navigability
nawgab,lm_lrr dependence on owner
[I..‘ |:|"H
Parl! Clags Nama Part2 Class Name
Matthew Morgenstern 18 CS211 Class - Sept. 7,2000

09/08/2000 12:26

Generalization/specialization

Superclass-B

superclass-A oparation

RV

Subiclass-1 Subelass-2

operation

Matthew Morgenstern 19 CS211 Class - Sept. 7, 2000

"You can model 80 percent of most prob-
lems by using about 20 percent of the
UML."-- Grady Booch

Wisibhidlity amnd properties

- prl-lal:ﬂ: E N] Ay

= probtecihea ot vl obe

S— priwvabe dereecd atoribote
+=Fclass public ammriibbube

+ pwhlic operaticam

jprokec e O S S tE O

- Privans oOprerati-on
+Foclass public opera@morns

ODpraicomesl wisibility icoms
JATrrd Buates Dpperari o s

e public i public

'ﬁl'prcntec:ted lf?prntec:ted
%private pri'h.-':ate

impeplesma=sntation
20 CS211 Class - Sept. 7, 2000

" implemeaentation

Matthew Morgenstern

10
09/08/2000 12:26

UML for Java's AWT Container Classes

Companant

mmwnant::.l’ isEnabled: boolean
""""" - | mmiaibdea: baalaan

parsnt
0.4 I __ Labal
kayout .
Layout Manoged ; Caont@inmr Bution
Wi
Farneal
& b)
diapnosad)
I I
Frormse Dialog
btla: Sihee tle: Strimg
ieResizoble: boolean isFAagizabla: boolaan
Isbdodal: boolaan
Matthew Morgenstern 21 CS211 Class - Sept. 7, 2000

From UML of Java's AWT Container Classes

UML highlights selected aspects the Container class in Java's AWT.
Container is a subtype of Component.
Components can be made visible or active
Other kinds of components include labels, buttons, etc.
Containers include components (which may be other containers) and
also have a layout manager.
¢ From a component can find its container.
+ Not all components need a container.
Subtypes of container include panels and windows.
Windows can show and dispose themselves.
Window has subclasses frame and dialog.
Frames and dialogs have titles and can be set to resize or not.

« Although both subclasses of window do this, this behavior is not part of
window itself.

Dialogs can be marked as modal, but frames cannot.

Matthew Morgenstern 22 CS211 Class - Sept. 7, 2000

11

09/08/2000 12:26

coul
<<elementtype>> ny

IntematAddr |——— |

<<enumeration>>{
CountryCode
oLEA

$CER

Data model of a
simplified
Purchase Order
document

<<enumeration>>

OSubmit
Accept
$Reject

city

<<elementtype>>|
PurchaseOrder 1.%

lineltem

billTo{1}

shipTo{g}

<<elementtype>>|
Address

@

<<seguence>>

anon0

Matthew Morgenstern

©

v .
$Reject

city

@

<<datatype>>
String
<<scalar>> (from Logical View)|
Price
odigits =5
<<datatype>> gdecimals = 4
int
(from Logical View)
24 CS211 Class - Sept. 7, 2000

12

09/08/2000 12:26

Proxy - Design Pattern
Intent: This pattern makes the clients of a component communicate
with a representative (a surrogate) rather than to the component itself
Subject
Request)
{abstract}
Real Subject f Prowy
<+ -
Request) refers-to Request) £+ 4--—{ refers-to > HEI]UEEK’JT
Matthew Morgenstern 25 CS211 Class - Sept. 7, 2000

Proxy Server - Design Pattern

Motivating Problems:
Different clients need access to a remote server
Need optimization for access data: startup, batching
Inappropriate to access component directly
Do not want to hard code physical location (e.g. TCPIP address)
Need security / access control
Access need to be transparent and simple for the clients
Structure:
Use a representative (Proxy) between client and component

Offer interface of the component but performs additional pre and
post-processing such as access-control, caching, logging, etc

Matthew Morgenstern 26 CS211 Class - Sept. 7, 2000

13

09/08/2000 12:26

Java Implementation of Proxy Design Pattern

public class Proxy extends Subject

Real Subj ect refersTo;
ublic voi d Request ()

if (refersTo == null)
refersTo = new Real Subject();
ref ersTo. Request ()

Matthew Morgenstern 27 CS211 Class - Sept. 7, 2000

Applications of Proxy Pattern

e Remote Proxy: clients or remote components should be
shielded from network addresses and inter-process
communication protocols

e Protection Proxy: Components under access control

e Cache Proxy: Multiple clients share read-only results from
remote components

e Synchronization Proxy: Multiple simultaneous accesses to
a component must be synchronized

e Counting Proxy: Audit trail for component counts

o Firewall Proxy: Protect local client from outside world

Matthew Morgenstern 28 CS211 Class - Sept. 7, 2000

14

09/08/2000 12:26

