
09/08/2000 12:26

1

Matthew Morgenstern 1 CS211 Class - Sept. 7, 2000

Java Program Style and Design - ContinuedJava Program Style and Design - Continued

l Program Design Concepts:
u Design Patterns

u Refinement

u Abstractions - Program Conceptualization

– Object-oriented programming and abstraction

u Pseudo-code: abstraction and refinement

Today:

u JavaDoc

u Software Lifecycle

u UML - Unified Modeling Language

Matthew Morgenstern 2 CS211 Class - Sept. 7, 2000

JavaDoc - Java API Documentation GeneratorJavaDoc - Java API Documentation Generator
javadoc <sourcefiles.java> *
l Parses the declarations and documentation comments in a set

of Java source files

l Produces a set of HTML pages describing public and protected
classes, interfaces, constructors, methods, and fields.

u One .html file for each .java file and each package

u Class hierarchy (tree.html) & index of members (AllNames.html)

u Includes class and member signatures.

u You can add further documentation by including doc /**
comments in the source code - may include html tags
/**
 * This is a doc comment.
 */

u Doc comments only recognized immediately before class,
interface , constructor, method, or field declarations.

09/08/2000 12:26

2

Matthew Morgenstern 3 CS211 Class - Sept. 7, 2000

JavaDoc - 2JavaDoc - 2
l First sentence of each doc comment should be a sum-

mary sentence - for method summary at top of html file.

l javadoc parses special tags within a Javadoc comment.
These doc tags enable you to autogenerate a complete, well-
formatted API from your source code. The tags start with "at"
sign (@):

u @param parameter-name description
u @return description
u @exception fully-qualified-class-name description
u @author name-text
u @version version-text
u @see classname:

Adds a hyperlinked "See Also" entry to the class.

l Class, method, and Field doc comments supported.

l http://java.sun.com/products/jdk/1.1/docs/tooldocs/win32/javadoc.html

Matthew Morgenstern 4 CS211 Class - Sept. 7, 2000

An example of a method doc commentAn example of a method doc comment
/**
 * Returns the character at the specified index. An index
 * ranges from <code>0</code> to <code>length() - 1</code>.
 *
 * @param index the index of the desired character.
 * @return the desired character.
 * @exception StringIndexOutOfRangeException
 * if the index is not in the range <code>0</code>
 * to <code>length()-1</code>.
 * @see java.lang.Character#charValue()

 */
 public char charAt(int index) {
 ...
 }

For Java API - JavaDoc output see:
http://java.sun.com/products/jdk/1.2/docs/api/index.html

09/08/2000 12:26

3

Matthew Morgenstern 5 CS211 Class - Sept. 7, 2000

Overview pageOverview page

Matthew Morgenstern 6 CS211 Class - Sept. 7, 2000

Package pagePackage page

09/08/2000 12:26

4

Matthew Morgenstern 7 CS211 Class - Sept. 7, 2000

Classic ‘Waterfall’ Lifecycle
Waterfall model stages in the software development process are seen to

cascade down from one to another.

Classic ‘Waterfall’ Lifecycle
Waterfall model stages in the software development process are seen to

cascade down from one to another.

Is project technically, operationally, financially & legally feasible ?Is project technically, operationally, financially & legally feasible ?

Gather and Analyze the requirements for the systemGather and Analyze the requirements for the system

• Architectural high
level design (what
programs are we going to
need & how will they interact),

• Interface design (what are the
interfaces going to look like),

• Detailed low level design (how the
individual programs are going to
work),

• Data design (what data are we
going to need).

• Architectural high
level design (what
programs are we going to
need & how will they interact),

• Interface design (what are the
interfaces going to look like),

• Detailed low level design (how the
individual programs are going to
work),

• Data design (what data are we
going to need).

Implementation:
Designs are translated into code
Implementation:
Designs are translated into code

Module TestsModule Tests

Add extra things &/or change
existing things over time .
Add extra things &/or change
existing things over time .

Operation &
Maintence
OperationOperation &&
MaintenceMaintence

System TestsSystem Tests

Matthew Morgenstern 8 CS211 Class - Sept. 7, 2000

09/08/2000 12:26

5

Matthew Morgenstern 9 CS211 Class - Sept. 7, 2000

Matthew Morgenstern 10 CS211 Class - Sept. 7, 2000The FOUNTAIN Model for an individual class or a subsystemThe FOUNTAIN Model for an individual class or a subsystem

Note
feedback at
each stage

Note
feedback at
each stage

09/08/2000 12:26

6

Matthew Morgenstern 11 CS211 Class - Sept. 7, 2000

Iterative Lifecycle ModelIterative Lifecycle Model
“Producing software by successive refinement”

Spiral Development emphasizes iterative phases
“Producing software by successive refinement”

Spiral Development emphasizes iterative phases

Matthew Morgenstern 12 CS211 Class - Sept. 7, 2000

Unified Modeling Language (UML)Unified Modeling Language (UML)

l One of the main goals of system modeling is to

u partition a system into cohesive components

u that have stable interfaces, creating a

u core that need not change in response to subsystem-level
changes

l UML was developed by Grady Booch, James
Rumbaugh, and Ivar Jacobson

09/08/2000 12:26

7

Matthew Morgenstern 13 CS211 Class - Sept. 7, 2000

UML Modeling Techniques for Development ProcessUML Modeling Techniques for Development Process

We focus on:We focus on:

Matthew Morgenstern 14 CS211 Class - Sept. 7, 2000

UML Modelling DiagramsUML Modelling Diagrams
l Use case diagrams: external interaction with system:

u Enroll students in courses; • Produce student transcripts.

l Class diagrams: object models, classes & their interrelationships:
u including inheritance, aggregation, and associations, • Object diagrams

l Sequence / object-interaction diagrams: event-trace diagram:
u defines the logic of how objects interact; e.g. in a use case scenario.

l Component diagrams: show the software components used:
u shows their dependencies, interfaces, and interrelationships.

l Deployment diagrams: configuration of run-time processing units

u including the hardware and software.

l Statechart diagrams: represent states in the behavior of an object:
u shows events which cause transitions betwn stages & resulting actions.

l Collaboration diagrams: show the message flow between objects:
u implies the basic associations between objects in an O-O application.

http://www.sdmagazine.com/uml/focus.ambler.htm , http://www.rational.com/uml/index.jsp

09/08/2000 12:26

8

Matthew Morgenstern 15 CS211 Class - Sept. 7, 2000

UML Class DiagramUML Class Diagram

Matthew Morgenstern 16 CS211 Class - Sept. 7, 2000

09/08/2000 12:26

9

Matthew Morgenstern 17 CS211 Class - Sept. 7, 2000

Qualified AssociationQualifiedQualified AssociationAssociation

ConstraintConstraintConstraint

Association classesAssociation classesAssociation classes Role names & derived associationRole names & derived associationRole names & derived association

Matthew Morgenstern 18 CS211 Class - Sept. 7, 2000

dependence on ownerdependence on owner

09/08/2000 12:26

10

Matthew Morgenstern 19 CS211 Class - Sept. 7, 2000

Matthew Morgenstern 20 CS211 Class - Sept. 7, 2000

"You can model 80 percent of most prob-
lems by using about 20 percent of the
UML."-- Grady Booch

"You can model 80 percent of most prob-
lems by using about 20 percent of the
UML."-- Grady Booch

09/08/2000 12:26

11

Matthew Morgenstern 21 CS211 Class - Sept. 7, 2000

UML for Java's AWT Container ClassesUML for Java's AWT Container Classes

Matthew Morgenstern 22 CS211 Class - Sept. 7, 2000

From UML of Java's AWT Container ClassesFrom UML of Java's AWT Container Classes

l UML highlights selected aspects the Container class in Java's AWT.

l Container is a subtype of Component.

l Components can be made visible or active

l Other kinds of components include labels, buttons, etc.

l Containers include components (which may be other containers) and
also have a layout manager.

u From a component can find its container.

u Not all components need a container.

l Subtypes of container include panels and windows.

l Windows can show and dispose themselves.

l Window has subclasses frame and dialog.

l Frames and dialogs have titles and can be set to resize or not.
u Although both subclasses of window do this, this behavior is not part of

window itself.

l Dialogs can be marked as modal, but frames cannot.

09/08/2000 12:26

12

Matthew Morgenstern 23 CS211 Class - Sept. 7, 2000Address

<<elementtype>>
city

CountryCode

USA

ENG

GER

FR

<<enumeration>>

LanguageCode

ENG

FR

IT

<<enumeration>>

DocStates

Submit

Accept

Reject

<<enumeration>>

InternatAddr

<<elementtype>>
country

language

{ENG}

DocProcess

<<elementtype>>

PurchaseOrder

<<elementtype>>

shipTo{0}

billTo{1}
1..*1..*

lineItem

{3}

Data model of a
simplified

Purchase Order
document

Data model of a
simplified

Purchase Order
document

Matthew Morgenstern 24 CS211 Class - Sept. 7, 2000

Address

<<elementtype>>

String

(from Logical View)

<<datatype>>

name

{0}

street

{1}

city

{2}

Price

digits = 5

decimals = 4

<<scalar>>

anon0

<<sequence>>

name

{0}

cost

{2}

int

(from Logical View)

<<datatype>>

quantity

{1}

Accept

Reject

PurchaseOrder

<<elementtype>>

shipTo{0}

billTo{1}
1..*

*

1..*

*

lineItem

{2}

09/08/2000 12:26

13

Matthew Morgenstern 25 CS211 Class - Sept. 7, 2000

Intent: This pattern makes the clients of a component communicate
with a representative (a surrogate) rather than to the component itself
Intent: This pattern makes the clients of a component communicate
with a representative (a surrogate) rather than to the component itself

Proxy - Design PatternProxy - Design Pattern

refers-torefers-torefers-to refers-to ->refers-to refers-to - ->>

{abstract}{abstract}

Matthew Morgenstern 26 CS211 Class - Sept. 7, 2000

Proxy Server - Design PatternProxy Server - Design Pattern
Motivating Problems:

• Different clients need access to a remote server

• Need optimization for access data: startup, batching

• Inappropriate to access component directly

• Do not want to hard code physical location (e.g. TCPIP address)

• Need security / access control

• Access need to be transparent and simple for the clients

Structure:

• Use a representative (Proxy) between client and component

• Offer interface of the component but performs additional pre and

post-processing such as access-control, caching, logging, etc

09/08/2000 12:26

14

Matthew Morgenstern 27 CS211 Class - Sept. 7, 2000

Java Implementation of Proxy Design PatternJava Implementation of Proxy Design Pattern

public class Proxy extends Subject
{
RealSubject refersTo;
public void Request()
{

if (refersTo == null)
refersTo = new RealSubject();

refersTo.Request()
}

}

Matthew Morgenstern 28 CS211 Class - Sept. 7, 2000

Applications of Proxy PatternApplications of Proxy Pattern

l Remote Proxy : clients or remote components should be
shielded from network addresses and inter-process
communication protocols

l Protection Proxy : Components under access control

l Cache Proxy : Multiple clients share read-only results from
remote components

l Synchronization Proxy : Multiple simultaneous accesses to
a component must be synchronized

l Counting Proxy: Audit trail for component counts

l Firewall Proxy: Protect local client from outside world

