Java Program Style and Design - Continued

- Program Design Concepts:
 - Design Patterns
 - Refinement
 - Abstractions Program Conceptualization
 - Object-oriented programming and abstraction
 - · Pseudo-code: abstraction and refinement

Today:

- JavaDoc
- Software Lifecycle
- UML Unified Modeling Language

Matthew Morgenstern

1

CS211 Class - Sept. 7, 2000

JavaDoc - Java API Documentation Generator

javadoc <sourcefiles.java> *

- Parses the declarations and documentation comments in a set of Java source files
- Produces a set of HTML pages describing public and protected classes, interfaces, constructors, methods, and fields.
 - One .html file for each .java file and each package
 - Class hierarchy (tree.html) & index of members (AllNames.html)
 - Includes class and member signatures.
 - You can add further documentation by including doc /** comments in the source code - may include html tags

```
/**
 * This is a <b>doc</b> comment.
 */
```

 Doc comments only recognized immediately before class, interface, constructor, method, or field declarations.

Matthew Morgenstern

2

JavaDoc - 2

- First sentence of each doc comment should be a summary sentence - for method summary at top of html file.
- javadoc parses special tags within a Javadoc comment.
 These doc tags enable you to autogenerate a complete, well-formatted API from your source code. The tags start with "at" sign (@):
 - @param parameter-name description
 - @return description
 - @exception fully-qualified-class-name description
 - @author name-text
 - @version version-text
 - @see classname: Adds a hyperlinked "See Also" entry to the class.
- Class, method, and Field doc comments supported.
- http://java.sun.com/products/jdk/1.1/docs/tooldocs/win32/javadoc.html

Matthew Morgenstern

3

CS211 Class - Sept. 7, 2000

An example of a method doc comment

```
* Returns the character at the specified index. An index
   * ranges from <code>0</code> to <code>length() - 1</code>.
     @param
               index the index of the desired character.
   * @return the desired character.
   * @exception StringIndexOutOfRangeException
            if the index is not in the range <code>0</code>
            to <code>length()-1</code>.
   * @see
              java.lang.Character#charValue()
   public char charAt(int index) {
      }
For Java API - JavaDoc output see:
http://java.sun.com/products/jdk/1.2/docs/api/index.html
Matthew Morgenstern
                                             CS211 Class - Sept. 7, 2000
```


Features of waterfall model

- Systematic and linear approach towards software development
- each phase is distinct.
- Design and implementation phase only after analysis is over
- proper feedback, to minimize the rework

Matthew Morgenstern

8

Weaknesses of waterfall model

- Difficult for the customer to state all the requirements in advance
- difficult to estimate the resources , with the limited information
- actual feedback is always after the system is delivered
- changes are not anticipated

Matthew Morgenstern

ξ

Unified Modeling Language (UML)

- One of the main goals of system modeling is to
 - partition a system into cohesive components
 - that have stable interfaces, creating a
 - core that need not change in response to subsystem-level changes
- UML was developed by Grady Booch, James Rumbaugh, and Ivar Jacobson

Matthew Morgenstern

12

UML Modelling Diagrams

- Use case diagrams: external interaction with system:
 - Enroll students in courses; Produce student transcripts.
- Class diagrams: object models, classes & their interrelationships:
 - including inheritance, aggregation, and associations, Object diagrams
- Sequence / object-interaction diagrams: event-trace diagram:
 - defines the logic of how objects interact; e.g. in a use case scenario.
- Component diagrams: show the software components used:
 - shows their dependencies, interfaces, and interrelationships.
- Deployment diagrams: configuration of run-time processing units
 - including the hardware and software.
- Statechart diagrams: represent states in the behavior of an object:
 - shows events which cause transitions betwn stages & resulting actions.
- Collaboration diagrams: show the message flow between objects:
 - implies the basic associations between objects in an O-O application.

http://www.sdmagazine.com/uml/focus.ambler.htm, http://www.rational.com/uml/index.jsp

Matthew Morgenstern

14

From UML of Java's AWT Container Classes

- UML highlights selected aspects the Container class in Java's AWT.
- Container is a subtype of Component.
- Components can be made visible or active
- Other kinds of components include labels, buttons, etc.
- Containers include components (which may be other containers) and also have a layout manager.
 - From a component can find its container.
 - Not all components need a container.
- Subtypes of container include panels and windows.
- Windows can show and dispose themselves.
- · Window has subclasses frame and dialog.
- Frames and dialogs have titles and can be set to resize or not.
 - Although both subclasses of window do this, this behavior is not part of window itself.
- Dialogs can be marked as modal, but frames cannot.

Matthew Morgenstern

22

Proxy - Design Pattern

Intent: This pattern makes the clients of a component communicate with a representative (a surrogate) rather than to the component itself

Proxy Server - Design Pattern

Motivating Problems:

- Different clients need access to a remote server
- Need optimization for access data: startup, batching
- · Inappropriate to access component directly
- Do not want to hard code physical location (e.g. TCPIP address)
- Need security / access control
- Access need to be transparent and simple for the clients

Structure:

- · Use a representative (Proxy) between client and component
- Offer interface of the component but performs additional pre and post-processing such as access-control, caching, logging, etc

Matthew Morgenstern

26

Java Implementation of **Proxy** Design Pattern

```
public class Proxy extends Subject
{
   RealSubject refersTo;
   public void Request()
   {
      if (refersTo == null)
           refersTo = new RealSubject();
      refersTo.Request()
   }
}
```

Matthew Morgenstern

27

CS211 Class - Sept. 7, 2000

Applications of Proxy Pattern

- Remote Proxy: clients or remote components should be shielded from network addresses and inter-process communication protocols
- Protection Proxy: Components under access control
- Cache Proxy: Multiple clients share read-only results from remote components
- **Synchronization Proxy**: Multiple simultaneous accesses to a component must be synchronized
- Counting Proxy: Audit trail for component counts
- Firewall Proxy: Protect local client from outside world

Matthew Morgenstern

28