
09/06/2000 0:39

1

Matthew Morgenstern 1 CS211 Class - Sept. 5, 2000

Java Program Style and DesignJava Program Style and Design

l Program Design Concepts:
u Design Patterns

u Refinement

u Abstractions - Program Conceptualization

– Object-oriented programming and abstraction

u Pseudo-code: abstraction and refinement

u JavaDoc

u Software Lifecycle

u UML - Unified Modeling Language

Matthew Morgenstern 2 CS211 Class - Sept. 5, 2000

Programming Rules of ThumbProgramming Rules of Thumb

l Learn program patterns of general utility and use a relevant

pattern (if you know one) for the problem at hand.

l Seek inspiration by systematically working test data by hand. Be

introspective; ask yourself: “What process am I doing?”.

l Write comments that precisely describe the contents of each

variable and each section of the program.

l Declare variables for each piece of information you maintain

when working the problem by hand.

l Remember the problem’s boundary conditions.

l Validate your program by tracing it on simple test data.

09/06/2000 0:39

2

Matthew Morgenstern 3 CS211 Class - Sept. 5, 2000

/* “Process” integer input values until (but not
including) some designated stoppingValue. */

 α // initialization
 variable = in.readInt();
 while (variable != stoppingValue)
 {
 β // Main processing
 variable = in.readInt();
 }
 γ // finalization and wrapup

Constrast With
/* Do b for each integer between 1 and n. */
 α
 variable = 1;
 while (variable <= n) //or use for(, ,) loop
 {
 β
 variable = variable + 1;
 }
 γ

A Useful Design PatternA Useful Design Pattern

Matthew Morgenstern 4 CS211 Class - Sept. 5, 2000

Pattern for “processing” gradesPattern for “processing” grades

/* “Process” grades until (but not including) a stopping
signal of -1. */

 α
 grade = in.readInt();
 while (grade != -1)
 {
 β
 grade = in.readInt();
 }

 γ

int grade; // the grade being processed.

09/06/2000 0:39

3

Matthew Morgenstern 5 CS211 Class - Sept. 5, 2000

Task 1: Print the gradesTask 1: Print the grades

where
α :

β : System.out.println(grade);

γ :

/* “Process” grades until (but not including) a stopping
signal of -1. */

 α
 grade = in.readInt();
 while (grade != -1)
 {
 β
 grade = in.readInt();
 }
 γ

int grade; // the grade being processed.

Matthew Morgenstern 6 CS211 Class - Sept. 5, 2000

Task 2: Print the average - similar patternTask 2: Print the average - similar pattern

where
α : count = 0; sum = 0; // initialization
β : count = count + 1; // main processing
 sum = sum + grade;
γ : System.out.println(sum / count); // finalize

/* “Process” grades until (but not including) a stopping
signal of -1. */

 α
 grade = in.readInt();
 while (grade != -1)
 {
 β
 grade = in.readInt();
 }
 γ

int grade; // the grade being processed.
int count; // # of grades so far.
int sum; // sum of grades so far.

09/06/2000 0:39

4

Matthew Morgenstern 7 CS211 Class - Sept. 5, 2000

Ways to Refine P into SubproblemsWays to Refine P into Subproblems

l A program pattern
u Do whatever n times

u Process input values up until (but not including) a
stopping value.

l Stepwise refinement
u Break problem into subproblems

l Iterative refinement
u ‘chip away’ at the problem, each time solving a

portion and leaving a ‘smaller’ subproblem

Matthew Morgenstern 8 CS211 Class - Sept. 5, 2000

Programming By Stepwise RefinementProgramming By Stepwise Refinement

Given: a problem P, write Java program that solves P

l An “algorithm” for you to follow when programming:

 if (P is simple enough to code immediately)
 Write the Java code that solves P;
 else {
 Refine P into subproblems;
 Write Java code that solves each subproblem;
 }
l The refinement of P into subproblems must include a description

of how the code segments solving the subproblems combine to
form code that solves P.

l You can write the Java code segments that solve the subproblems
in any order.

09/06/2000 0:39

5

Matthew Morgenstern 9 CS211 Class - Sept. 5, 2000

Stepwise RefinementStepwise Refinement

Slide 9Slide 9

Matthew Morgenstern 10 CS211 Class - Sept. 5, 2000

Next Step of RefinementNext Step of Refinement

09/06/2000 0:39

6

Matthew Morgenstern 11 CS211 Class - Sept. 5, 2000

Substep RefinementSubstep Refinement

l Some of the sub-algorithms need further refinement. For
example, the step

– 2.1. Fill kettle with water
might be refined as
2.1.1. Put kettle under tap
2.1.2. Turn on tap
2.1.3. Wait until kettle is full
2.1.4. Turn off tap

l The program is then constructed by translating the final
refinement of each step into Java.

Matthew Morgenstern 12 CS211 Class - Sept. 5, 2000

Stepwise Refinement - SortingStepwise Refinement - Sorting

l Sort elements x1, x2, …, xn :
Substeps:

u Divide into 2 sublists:
x1, …, x n/2 and x n/2 +1 , … , xn

u Sort sublist1 and sort sublist2

u Merge the two sorted sublists
– since both sublists are sorted, it is a linear process

to combine lists from left to right

09/06/2000 0:39

7

Matthew Morgenstern 13 CS211 Class - Sept. 5, 2000

Iterative RefinementIterative Refinement
l Factorial: n! is n(n-1)(n-2)….1

u Factorial (k): // pseudo-code
– if k > 1 then ans = k * Factorial(k-1)

else ans = 1

– return ans

u long factorial(int k) { // recursive solution

if (k >1) return(k * factorial(k-1));
else return 1

}

u long fact_iter(int k) // interative solution
{

long ans = 1 ;
for (int j=1; j<=k ; j++)

ans = ans * j ;
return ans;

 }

Matthew Morgenstern 14 CS211 Class - Sept. 5, 2000

Program ConceptualizationProgram Conceptualization
l Abstraction:

u Focus on the essential aspects of an entity (thing or
concept)

u Ignores or conceals less important aspects.

u Simplifies complex situation

u Attributes: properties or characteristics of entity
– typically correspond to the data that is recorded

u Behavior: set of actions that the object can perform.

l The abstraction is based on the goal or problem domain:

u which data are essential

u which behaviors or operations are needed

u constraints which reflect real world:
– age is non-negative
– object cannot be in two places at same time

09/06/2000 0:39

8

Matthew Morgenstern 15 CS211 Class - Sept. 5, 2000

Properties of a Good AbstractionProperties of a Good Abstraction

l Abstraction:
u A named collection of attributes and behavior relevant

to modeling a given entity for some particular purpose.

l Desirable properties for an abstraction are:
u Well named: suggests correct intuition, expectations.

u Coherent : contains a related set of attributes and behavior
that make sense from the viewpoint of the modeler.

u Minimal: not contain extraneous attributes or behavior for the
intended purpose.

u Complete : contain all of the attributes and behavior
necessary for its intended purpose.

l Good Design:
u Choose the ‘right’ abstraction for the purpose.

Matthew Morgenstern 16 CS211 Class - Sept. 5, 2000

Mapping Abstractions to Classes and ObjectsMapping Abstractions to Classes and Objects
l The attributes and behavior of an abstraction are

mapped to:

u Attributes: a set of data (variables, array, lists, complex data
structures, etc.)

u Behavior : a set of methods (also known as operations,
functions, actions).

l The rendering of abstractions in software has always been
the implicit goal of programming.

l Object-oriented programming offers sophisticated
structures: classes and objects to represent abstractions:

u Abstractions can be represented more easily, more directly, and
more explicitly in the object paradigm.

u Software reuse of classes is a major benefits of object-oriented
programming.

09/06/2000 0:39

9

Matthew Morgenstern 17 CS211 Class - Sept. 5, 2000

Mapping Abstractions to SoftwareMapping Abstractions to Software

Matthew Morgenstern 18 CS211 Class - Sept. 5, 2000

Software ObjectsSoftware Objects
l Class definition:

u Allows the common structure to be defined once and

u Reused to create new objects that need that structure.

l The two main parts of an object are:
• Implementation: data and methods are hidden inside the

object.

• Interface : the signature of all methods that are visible
outside of the object.

l Encapsulation:
u The hiding of the object's implementation details and data.

– Provides implementation independence

u Restricted access to only the non-private data members
(usually methods) of the object.

u Object : a distinct instance of a given class that
encapsulates its implementation details and is structurally
identical to all other instances of that class.

09/06/2000 0:39

10

Matthew Morgenstern 19 CS211 Class - Sept. 5, 2000

Design Strategies Embodied In
Object-Oriented Programming
Design Strategies Embodied In
Object-Oriented Programming

l Abstraction - simplifying to its essentials the description
of a real-world entity.

l Separation - treating independently "what" an entity does
from "how" it does it.

l Composition - building complex "whole" systems by
assembling simpler "parts" in one of two basic ways:

• association
• aggregation

l Generalization - identifying common elements among
different entities.

u That’s what classes and subclasses help provide.

u So do Design Patterns.

Matthew Morgenstern 20 CS211 Class - Sept. 5, 2000

Connections Among Strategies,
Structures and Goals

Connections Among Strategies,
Structures and Goals

Polymorphism describes the use of variables which may refer at run-time to objects of
different classes.
Polymorphism describes the use of variables which may refer at run-time to objects of
different classes.

09/06/2000 0:39

11

Matthew Morgenstern 21 CS211 Class - Sept. 5, 2000

Pseudo-code and FlowchartsPseudo-code and Flowcharts

l Two widely used notations for developing algorithms
are pseudo-code and flowcharts.

u A flowchart:
– A diagram containing lines representing all the possible

piecewise paths through the program,
– These lines connect geometric shapes which represent

conditional branching, subordinate steps, etc.

u Pseudo-code is a form of “stylised” (or “structured”)
natural language.

– Less formal than flowcharts, potentially more expressive,
tho more potential for ambiguity.

Matthew Morgenstern 22 CS211 Class - Sept. 5, 2000

09/06/2000 0:40

12

Matthew Morgenstern 23 CS211 Class - Sept. 5, 2000

Pseudo codePseudo code
l Pseudo code is a fast and effective tool that facilitates well

structured program code.

l It provides an intermediate step in the process of translating
from a mental conceptualization to a more precise specification.

l Pseudo-code is less formal and detailed than a programming
language such as Java, but more precise than simple English - it
need not be syntactically perfect.

u It allows the programmer to think in terms of the program
flow rather than in terms of specific language syntax.

l Pseudo code can be embedded in the target code as comments
to provide a clear and succinct description of the program flow.

u Additional documentation should be added to identify program details
and clarify program operation.

Matthew Morgenstern 24 CS211 Class - Sept. 5, 2000

Pseudo code for Program DevelopmentPseudo code for Program Development

ProgramProgramProgram

program mustprogram mustprogram must

09/06/2000 0:40

13

Matthew Morgenstern 25 CS211 Class - Sept. 5, 2000

Pseudo Code - Provides an AbstractionPseudo Code - Provides an Abstraction

l Pseudo-Code enables details to be elided now so that
essential characteristics are visible without distraction.

Matthew Morgenstern 26 CS211 Class - Sept. 5, 2000

Pseudo-Code ExamplePseudo-Code Example

l Play the game (main method): // “Eight-Off” game
u Set up the game

u while game has not been won
– print the game status

– prompt user and read next move

u Print an announcement that the game was won

l Set up the game (method):
u create Deck arrays foundation[0..3], reserve[1..8], and column[1..8]

 (reserve[], column[] start at 0, but ignore that position)

l Test if the game has been won (method):

l Print the game status (foundations, reserves, columns)
u print "Foundations (0) "
u for each foundation f :

– if f is empty then print "---- "
– otherwise print top card of f and two spaces

l Prepare for the move from source to dest (method) :
– declare s and d to be Decks, initially set to null
– verify src, dst are in the range -8..8 and that src is non-zero …..

