Java Program Style and Design

e Program Design Concepts:
+ Design Patterns
+ Refinement
« Abstractions - Program Conceptualization
— Object-oriented programming and abstraction
+ Pseudo-code: abstraction and refinement

JavaDoc
Software Lifecycle
+ UML - Unified Modeling Language

* o

Matthew Morgenstern 1 CS211 Class - Sept. 5, 2000

Programming Rules of Thumb

e Learn program patterns of general utility and use a relevant

pattern (if you know one) for the problem at hand.

e Seek inspiration by systematically working test data by hand. Be

introspective; ask yourself: “What process am | doing?”.

e Write comments that precisely describe the contents of each

variable and each section of the program.

e Declare variables for each piece of information you maintain

when working the problem by hand.
e Remember the problem’s boundary conditions.

e Validate your program by tracing it on simple test data.

Matthew Morgenstern 2 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

A Useful Design Pattern

/[* “Process” integer input values until (but not
i ncl udi ng) sone designated stoppingVval ue. */
a /linitialization
variable = in.readlnt();
V\hi{l e (variable != stoppingVval ue)

b /I Main processing
variable = in.readlnt();

g //finalization and wrapup

Constrast With
/* Do b for each integer between 1 and n. */
a
variable = 1;
while (variable <= n) llor use for(, ,) loop
{
b
variable = variable + 1;
}
g
Matthew Morgenstern 3 CS211 Class - Sept. 5, 2000
(11 - 77
Pattern for “processing’” grades
int grade; /1 the grade being processed.

/* “Process” grades until (but not including) a stopping

signal of -1. */

a
grade = in.readlnt();
while (grade !'= -1)
{
b
grade = in.readlnt();
}
g
Matthew Morgenstern 4 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Task 1: Print the grades

int grade; /1 the grade being processed.

/* “Process” grades until (but not including) a stopping
signal of -1. */

a
grade = in.readlnt();
while (grade = -1)
b
grade = in.readlnt();
9
where
a:
b: System out.println(grade);
g:
Matthew Morgenstern 5 CS211 Class - Sept. 5, 2000
Task 2: Print the average - similar pattern
int grade; /1 the grade being processed.
int count; /1 # of grades so far.
int sum /1 sum of grades so far.

/* “Process” grades until (but not including) a stopping
signal of -1. */

a
grade = in.readlnt();
mh%le (grade '= -1)
b
} grade = in.readlnt();
g
where
a:count = 0; sum = 0; /[initialization
b:count = count + 1; /I main processing

sum = sum + grade
g: Systemout.println(sum/ count); //finalize

Matthew Morgenstern 6 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Ways to Refine P into Subproblems

e A program pattern
+ Do whatevern times

+ Process input values up until (but not including) a
stopping value.

e Stepwise refinement
+ Break problem into subproblems

¢ lterative refinement

+ ‘chip away’ at the problem, each time solving a
portion and leaving a ‘smaller’ subproblem

Matthew Morgenstern 7 CS211 Class - Sept. 5, 2000

Programming By Stepwise Refinement

Given: a problem P, write Java program that solves P

e An “algorithm” for you to follow when programming:

if (Pis sinmple enough to code i mediately)
Wite the Java code that solves P;

el se {
Refine P into subprobl ens;
Wite Java code that solves each subproblem

}

o Therefinement of P into subproblems must include a description
of how the code segments solving the subproblems combine to
form code that solves P.

e You can write the Java code segments that solve the subproblems
in any order.

Matthew Morgenstern 8 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Stepwise Refinement
Break a complex problem down into a number of simpler steps, each of

which can be salved by an algorithm which is smaller and simpler than the
one required to solve the averal problem.

=rmaller and simpler therefare easier to construct and sketch in detall.
Sub-algarithms themselve s can be broken into smaller portions

Refinement of the algorithm continues inthis manner until each step is
sufficiently detailed.

Fefinement means replacing existing ste psfinstructions with new version that
fillz in details.

Example: Making tea. Suppose we have a rohotwhich carries out
household tasks. We wish to program the robot to make a cup of tea. An
initial atternpt at an alganthm might be:

1. Put tea kaves in pot
2. Boll water

3. Addwater fo pat

4. Wat & minutes

5. Faur tea inta cup

Slide 9

Next Step of Refinement

» These steps are probably not detailed enough for the robat. YWe therefarae
refine each step into a sequence of smaller steps:

[, Put tes baves into pot)_w
might be refined to

1.1 Open box of tea

1.2 Extract one spoonful of tea leaves

1.3 Ty spoonful into pot
1.4 Close box of tea

Sirmilarly

_w [5. Pour tea into cup|
dtao

miaht be refine might be refined to
> ? e R T 8.7, Pour tea from pot into cup until cup ts full

2.2 Switch on kettle
2.3 Wai unti water is bolled
2.4 Switch off kettle

Matthew Morgenstern 10 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Substep Refinement

e Some of the sub-algorithms need further refinement. For
example, the step

— 2.1. Fill kettle with water
might be refined as
2.1.1. Put kettle under tap
2.1.2. Turn on tap
2.1.3. Wait until kettle is full
2.1.4. Turn off tap

e The program is then constructed by translating the final
refinement of each step into Java.

Matthew Morgenstern 11 CS211 Class - Sept. 5, 2000

Stepwise Refinement - Sorting

e Sort elements x1, X2, ..., Xn:
Substeps:
+ Divide into 2 sublists:
X1, ...,Xn/2 and Xn/2+1,.., Xn
+ Sort sublistl and sort sublist2

+ Merge the two sorted sublists

— since both sublists are sorted, it is a linear process
to combine lists from left to right

Matthew Morgenstern 12 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Iterative Refinement

e Factorial: nlis n(n-1)(n-2)....1
+ Factorial (k): /I pseudo-code
— if k > 1 then ans = k * Factorial(k-1)
elseans=1
— return ans
+ long factorial(int k) { Il recursive solution
if (k >1) return(k * factorial(k-1));
elsereturn 1

. I{ong fact_iter(int k) Il interative solution
longans=1;
for (int j=1; j<=k; j++)
ans =ans *j;
return ans;
Matthew Morgenstern 13 CS211 Class - Sept. 5, 2000

Program Conceptualization

e Abstraction:
+ Focus on the essential aspects of an entity (thing or
concept)
+ Ignores or conceals less important aspects.
+ Simplifies complex situation
+ Attributes: properties or characteristics of entity
— typically correspond to the data that is recorded
+ Behavior: set of actions that the object can perform.

e The abstraction is based on the goal or problem domain:
+ which data are essential
+ which behaviors or operations are needed

+ constraints which reflect real world:
— age is non-negative
— object cannot be in two places at same time

Matthew Morgenstern 14 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Properties of a Good Abstraction

e Abstraction:
« A named collection of attributes and behavior relevant
to modeling a given entity for some particular purpose.

e Desirable properties for an abstraction are:

¢ Well named: suggests correct intuition, expectations.

¢ Coherent: contains a related set of attributes and behavior
that make sense from the viewpoint of the modeler.

¢ Minimal: not contain extraneous attributes or behavior for the
intended purpose.

+ Complete: contain all of the attributes and behavior
necessary for its intended purpose.

e Good Design:
+ Choose the ‘right’ abstraction for the purpose.

Matthew Morgenstern 15 CS211 Class - Sept. 5, 2000

Mapping Abstractions to Classes and Objects

e The attributes and behavior of an abstraction are
mapped to:

+ Attributes: a set of data (variables, array, lists, complex data
structures, etc.)

+ Behavior: a set of methods (also known as operations,
functions, actions).

e The rendering of abstractions in software has always been
the implicit goal of programming.

o Object-oriented programming offers sophisticated
structures: classes and objects to represent abstractions:

+ Abstractions can be represented more easily, more directly, and
more explicitly in the object paradigm.

+ Software reuse of classes is a major benefits of object-oriented
programming.

Matthew Morgenstern 16 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Mapping Abstractions to Software

realworld ubstraciion softwware
{data, data,....}

{method, method,...}

Matthew Morgenstern 17 CS211 Class - Sept. 5, 2000

Software Objects

e Class definition:

+ Allows the common structure to be defined once and
+ Reused to create new objects that need that structure.

e The two main parts of an object are:
Implementation: data and methods are hidden inside the
object.
Interface: the signature of all methods that are visible
outside of the object.
e Encapsulation:
+ The hiding of the object's implementation details and data.
— Provides implementation independence
+ Restricted access to only the non-private data members
(usually methods) of the object.
+ Object : adistinctinstance of a given class that

encapsulates its implementation details and is structurally
identical to all other instances of that class.

Matthew Morgenstern 18 CS211 Class - Sept. 5, 2000

09/06/2000 0:39

Design Strategies Embodied In
Object-Oriented Programming

e Abstraction - simplifying to its essentials the description
of a real-world entity.

e Separation - treating independently "what" an entity does
from "how" it does it.

e Composition - building complex "whole" systems by
assembling simpler "parts" in one of two basic ways:
- association
- aggregation
e Generalization - identifying common elements among
different entities.
+ That's what classes and subclasses help provide.
¢ So do Design Patterns.

Matthew Morgenstern 19 CS211 Class - Sept. 5, 2000

Connections Among Strategies,
Structures and Goals

Design Object Oriented Software Engineering
Strategies Software Struetures Goals
SN SN SN
ahstraction ohjects o veusahility
separation <~ / classes 7
s ‘-"'f . .
composition inheritance / extensihili
|| Golymonphisn) | 7 v
generalization {f‘ terplates
[/ A fexibility
[design patterns

R N N

Polymorphism describes the use of variables which may refer at run-time to objects of
different classes.

Matthew Morgenstern 20 CS211 Class - Sept. 5, 2000

10

09/06/2000 0:39

Pseudo-code and Flowcharts

e Two widely used notations for developing algorithms
are pseudo-code and flowcharts.

+ A flowchart:
— A diagram containing lines representing all the possible
piecewise paths through the program,
— These lines connect geometric shapes which represent
conditional branching, subordinate steps, etc.

o Pseudo-code is a form of “stylised” (or “structured”)

natural language.
— Less formal than flowcharts, potentially more expressive,

tho more potential for ambiguity.

Matthew Morgenstern 21 CS211 Class - Sept. 5, 2000
Example: Flow charts & Fseudo-Code 15
| Flow Chart
Pseudo-Code

rnark < 0 or

rmark = 100 1. input mark

I 2. complain if mark
below O orabove

H 100

I 3. determine grade &

i from mark (=70 =

P A 4070=B; <40 |
Po=0
yes{ 1o P4 print mark

"tools" to help you
design/refine/debugy
algarithms

Matthew Morgenstern 22 CS211 Class - Sept. 5, 2000

11
00/06/2000 0:39

Pseudo code

o Pseudo code is a fast and effective tool that facilitates well
structured program code.

e It provides an intermediate step in the process of translating
from a mental conceptualization to a more precise specification.

e Pseudo-code is less formal and detailed than a programming
language such as Java, but more precise than simple English - it
need not be syntactically perfect.

+ It allows the programmer to think in terms of the program
flow rather than in terms of specific language syntax.
e Pseudo code can be embedded in the target code as comments
to provide a clear and succinct description of the program flow.

+ Additional documentation should be added to identify program details
and clarify program operation.

Matthew Morgenstern 23 CS211 Class - Sept. 5, 2000

Pseudo code for Program Development

The software development cycle

Idea \ starts with the basic idea.

The idea gets formalized in a

Specification \speciﬁcation.

The specification
is then expressed in Pseudo-code
pseudo-code.

Pseudo-code is then translated
Translate to

line by line into the target
language. Program \

The program must

then be tested, debugged, and proven Test/Debug
to meet the specification. Cycle
Matthew Morgenstern 24 CS211 Class - Sept. 5, 2000

12
09/06/2000 0:40

Pseudo Code - Provides an Abstraction

* For example consider the following algorithmto calculate the flight time of an
aircraft using infarmation on the timetable:

Look upn departure time
Loolk up arnval time
Subtract departure time from arival tirme

& This algarithm will usually give the correct result, but the subtraction will have
totake into account the special case whenthe plane arrives on the day after
departure. Alsa, what about:

Different tirme zones ?

Daylight savingstime ¢

e Pseudo-Code enables details to be elided now so that
essential characteristics are visible without distraction.

* Thusthe designer of an algorithm rmust ensure:
& Praciseness of the algarithm
* Al possible circumstances are handled
s Termination of the algorithm

Matthew Morgenstern 25 CS211 Class - Sept. 5, 2000

Pseudo-Code Example

e Play the game (main method): /I “Eight-Off” game
¢ Setupthe game
¢ while game has not been won
— print the game status
— prompt user and read next move
¢ Print an announcement that the game was won

e Set up the game (method):

+ create Deck arrays foundation[0..3], reserve[1..8], and column[1..8]
(reserve[], column[] start at 0, but ignore that position)

e Test if the game has been won (method):

e Print the game status (foundations, reserves, columns)

+ print "Foundations (0) "
« for each foundation f :
— if fis empty then print "---- "
— otherwise print top card of fand two spaces

e Prepare for the move from source to dest (method) :
— declare s and d to be Decks, initially set to null
— verify src, dst are in the range -8..8 and that src is non-zero
Matthew Morgenstern 26 CS211 Class - Sept. 5, 2000

13

09/06/2000 0:40

