
09/08/2000 13:23

1

Matthew Morgenstern 1 CS211 Accel/Proj - Sept. 6 & 8, 2000

The role of a type systemThe role of a type system

l As a means for representing concepts more
explicitly in the application domain.

l As a means for detecting certain kinds of
programming errors - type errors

l As a means for language developers to
optimize for increased performance.

Matthew Morgenstern 2 CS211 Accel/Proj - Sept. 6 & 8, 2000

Static or Dynamic - type checking mechanismStatic or Dynamic - type checking mechanism
l Static typing: the "type" of an attribute (e.g. and

integer, a float, or an instance of a class) is known at
compile time.

u The type of the attribute is made explicit, and

u The type checking is done at compile time.

u Catch type mismatch errors at compile time.

l Dynamic typing: no explicit type is assigned to an
identifier.

u In some such languages, it is possible to interrogate the
object at run time to determine the current type associated
with the identifier.

l In the early phases of software development, especially when
the language is used for prototyping, heavy type systems tend to
interfere with flexibility, and may impede productivity for rapid
prototyping.

09/08/2000 13:23

2

Matthew Morgenstern 3 CS211 Accel/Proj - Sept. 6 & 8, 2000

Type Systems and Program DevelopmentType Systems and Program Development

l Type means many things to many people:
u strict "types have verifiable behavior independent of

any implementation"
u to the less formal "type equals class" definition.

l Type system - strong or weak:
u weak typing: enforcement of type rules but with

well-defined exceptions or an explicit type-violation
mechanism.

u Weak typing is "friendlier" to the programmer than
strong typing, but catches fewer errors at compile
time.

u C and C++ are often said to be weakly typed, as they
automatically coerce many types e.g. ints and floats.
E.g. int a = 5; float b = a;
Some people ignore this and call C, C++ strongly
typed tho.

Matthew Morgenstern 4 CS211 Accel/Proj - Sept. 6 & 8, 2000

Strong TypingStrong Typing
l Strongly typed languages have type signatures and

behavior that can be represented in an abstract way

l Strict enforcement of type rules with no exceptions. All
types are known at compile time, i.e. are statically bound.
With variables that can store values of more than one
type, incorrect type usage can be detected at run-time.

l Strong typing catches more errors at compile time than
weak typing, resulting in fewer run-time exceptions.

l Type Signature: the sequence of primitive datatypes (and
possibly, any other formal constraints)
E.g.: {double, int, char}.

l Type refers to the specification, independent of the
implementation (the actual ‘class’).

09/08/2000 13:23

3

Matthew Morgenstern 5 CS211 Accel/Proj - Sept. 6 & 8, 2000

TypesTypes

l In a perfect strongly typed language, the type carries all
the information about the denoted object and can be
reasoned about without execution.

l On average, a function can be written in a dynamically
typed language much more quickly and can be less than
half the size syntactically than a statically typed function in
Java or a flexible template implementation in C++.

Matthew Morgenstern 6 CS211 Accel/Proj - Sept. 6 & 8, 2000

Type InferenceType Inference

l An algorithm for ascribing types to expressions in some
language, based on the types of the constants of the
language and a set of type inference rules such as:

f :: A -> B, x :: A
--------------------- (App)
 f x :: B

l This type inference rule, called "App" for application, says:
u if expression f has type A - > B and

u expression x has type A , then we can deduce that

u expression (f x) has type B.

u The expressions above the line are the premises and below,
the conclusion.

l May be used to: • Generate warnings, • Improve efficiency

