
UML Notation Guide

Chapter 4

4. STATIC STRUCTURE DIAGRAMS

4.1 Class diagram
4.2 Object diagram
4.3 Class
4.4 Name Compartment
4.5 List Compartment
4.6 Type
4.7 Interfaces
4.8 Parameterized Class (Template)
4.9 Bound Element
4.10 Utility
4.11 Metaclass
4.12 Class Pathnames
4.13 Importing a package
4.14 Attribute
4.15 Operation
4.16 Association
4.17 Binary Association
4.18 Association Role
4.19 Multiplicity
4.20 Qualifier
4.21 Association Class
4.22 N-ary association
4.23 Composition
4.24 Generalization
4.25 Dependency 55
4.26 Refinement Relationship
4.27 Derived Element
4.28 Navigation Expression

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (1 of 35) [09/09/2000 12:58:31 PM]



4. STATIC STRUCTURE DIAGRAMS
Class diagrams show the static structure of the model, in particular, the things that exist (such as
classes and types), their internal structure, and their relationships to other things. Class diagrams do
not show temporal information, although they may contain reified occurrences of things that have or
things that describe temporal behavior. An object diagram shows instances compatible with a
particular class diagram.

This chapter includes classes and their variations, including templates and instantiated classes, and the
relationships between classes: association and generalization. It includes the contents of classes:
attributes and operations. It also includes the organizational unit of class diagrams: packages.

4.1 Class diagram

A class diagram is a graph of modeling elements shown on a two-dimensional surface. (Note that a
''class'' diagram may also contain types, packages, relationships, and even instances, such as objects
and links. Perhaps a better name would be ''static structural diagram'' but ''class diagram'' sounds
better.)

4.1.1 Notation

A class diagram is a collection of (static) declarative model elements, such as classes, types, and their
relationships, connected as a graph to each other and to their contents. Class diagrams may be
organized into packages either with their underlying models or as separate packages that build upon
the underlying model packages.

4.2 Object diagram

An object diagram is a graph of instances. A static object diagram is an instance of a class diagram; it
shows a snapshot of the detailed state of a system at a point in time. A dynamic object diagram shows
the detailed state of a system over some period of time, including the changes that occur over time;
dynamic object diagrams are manifested as collaboration diagrams.

There is no need for tools to support a separate format for object diagrams. Class diagrams can contain
objects, so a class diagram with objects and no classes is an ''object diagram.'' Collaboration diagrams
contain objects, so a collaboration diagram with no messages is an ''object diagram.'' The phrase is
useful, however, to characterize a particular usage achievable in various ways.

4.3 Class

A class is the descriptor for a set of objects with similar structure, behavior, and relationships. UML
provides notation for declaring classes and specifying their properties, as well as using classes in
various ways. Some modeling elements that are similar in form to classes (such as types, signals, or
utilities) are notated as stereotypes of classes. Classes are declared in class diagrams and used in most
other diagrams. UML provides a graphical notation for declaring and using classes, as well as a textual
notation for referencing classes within the descriptions of other model elements.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (2 of 35) [09/09/2000 12:58:31 PM]

http://www.essaim.univ-mulhouse.fr/uml/intro.html


4.3.1 Semantics

The name of a class has scope within the package in which it is declared and the name must be unique
(among class names) within its package.

4.3.2 Basic notation

A class is drawn as a solid-outline rectangle with 3 compartments separated by horizontal lines. The
top name compartment holds the class name and other general properties of the class (including
stereotype); the middle list compartment holds a list of attributes; the bottom list compartment holds a
list of operations.

References. By default a class shown within a package is assumed to be defined within that package.
To show a reference to a class defined in another package, use the syntax

Package-name::Class-name

as the name string in the name compartment. A full pathname can be specified by chaining together
package names separated by double colons (::).

4.3.3 Presentation options

Either or both of the attribute and operation compartments may be suppressed. A separator line is not
drawn for a missing compartment. If a compartment is suppressed, no inference can be drawn about
the presence or absence of elements in it.

Additional compartments may be supplied as a tool extension to show other predefined or user-defined
model properties, for example, to show business rules, responsibilities, variations, events handled, and
so on. Most compartments are simply lists of strings. More complicated formats are possible, but UML
does not specify such formats; they are a tool responsibility. Appearance of each compartment should
preferably be implicit based on its contents. Tools may provide explicit markers if needed.

Tools may provide other ways to show class references and to distinguish them from class
declarations.

A class symbol with a stereotype icon may be ''collapsed'' to show just the stereotype icon, with the
name of the class either inside the class or below the icon. Other contents of the class are suppressed.

4.3.4 Style guidelines

Class name in boldface, centered.

Stereotype name in plain face, within guillemets, centered.

Typically class names begin with an uppercase letter.

Attributes and operations in plain face, left justified.

Typically attribute and operation names begin with a lowercase letter.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (3 of 35) [09/09/2000 12:58:31 PM]



As a tool extension, boldface may be used for marking special list elements, for example, to designate
candidate keys in a database design. This might encode some design property modeled as a tagged
value, for example.

Strings for the names of abstract classes or the signatures of abstract operations in italics.

Show full attributes and operations when needed and suppress them in other contexts or references.

4.3.5 Example

Figure 6. Class notation: details suppressed, analysis-level details, implementation-level details

4.4 Name Compartment

4.4.1 Notation

Displays the name of the class and other properties in up to 3 sections:

An optional stereotype keyword may be placed above the class name within guillemets, and/or a
stereotype icon may be placed in the upper right corner of the compartment.

The name of the class appears next. (Style: centered, leading capital, boldface.)

A property list may be placed in braces below the class name. The list may show class-level attributes
for which there is no UML notation and it may also show tagged values.

The stereotype and property list are optional.

Figure 7. Name compartment

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (4 of 35) [09/09/2000 12:58:31 PM]



4.5 List Compartment

4.5.1 Notation

Holds a list of strings, each of which is the encoded representation of an element, such as an attribute
or operation. The strings are presented one to a line with overflow to be handled in a tool-dependent
manner. In addition to lists of attributes or operations, lists can show other kinds of predefined or
user-defined values, such as responsibilities, rules, or modification histories. The manipulation of
user-defined lists is tool-dependent.

The items in the list are ordered and the order may be modified by the user. The order of the elements
is meaningful information and must be accessible within tools. For example, it may be used by a code
generator in generating a list of declarations. The list elements may be presented in a different order,
however, to achieve some other purpose. For example, they may be sorted in some way. Even if the
list is sorted, however, the items maintain their original order in the underlying model; the ordering
information is merely suppressed in the view.

An ellipsis ( . . . ) as the final element of a list or the final element of a delimited section of a list
indicates that there exist additional elements in the model that meet the selection condition but that are
not shown in that list. Such elements may appear in a different view of the list.

Group properties: A property string may be shown as a element of the list, in which case it applies to
all of the succeeding list elements until another property string appears as a list element. This is
equivalent to attaching the property string to each of the list elements individually. The property string
does not designate a model element. Examples of this usage include indicating a stereotype and
specifying visibility. Stereotype strings may also be used in a similar way to qualify subsequent list
elements.

4.5.2 Presentation options

A tool may present the list elements in a sorted order, in which case the inherent ordering of the
elements is not visible. A sort is based on some internal property and does not indicate additional
model information. Example sort rules include alphabetical order, ordering by stereotype (such as
constructors, destructors, then ordinary methods), ordering by visibility (public, then protected, then
private), etc.

The elements in the list may be filtered according to some selection rule. The specification of selection
rules is a tool responsibility. The absence of items from a filtered list indicates that no elements meet
the filter criterion, but no inference can be drawn about the presence or absence of elements that do not
meet the criterion (however, the ellipsis notation is available to show that invisible elements exist). It
is a tool responsibility whether and how to indicate the presence of either local or global filtering,

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (5 of 35) [09/09/2000 12:58:31 PM]



although a stand-alone diagram should have some indication of such filtering if it is to be
understandable.

If a compartment is suppressed, no inference can be drawn about the presence or absence of its
elements. An empty compartment indicates that no elements meet the selection filter (if any).

Note that attributes may also be shown by composition (see Figure 20).

4.5.3 Example

Figure 8. Stereotype keyword applied to groups of list elements

4.6 Type

A type is descriptor for objects with abstract state, concrete external operation specifications, and no
operation implementations. A class is a descriptor for objects with concrete state and concrete
operation implementation.

Classes implement types. A type provides a specification of external behavior. A class provides an
implementation data structure and a procedural implementation of methods that together implement
the specified behavior.

4.6.1 Semantics

A type may contain attributes and operations, but neither of them represents an implementation
commitment. Attributes in a type define the abstract state of the type. These represent the state
information supported by objects of the type, but an actual class implementing the type may represent
the information in a different way, as long as the representation maps to the abstract attributes of the

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (6 of 35) [09/09/2000 12:58:31 PM]



type. Type attributes can be used to define the effects of type operations. A type may contain
specifications for operations, including their signatures and a description of their effects, but the
operations do not contain implementations. The effect of an operation is defined in terms of the
changes it makes to the abstract attributes of the type.

It is sometimes helpful to describe abstract properties that represent structured information. For
example, a type might contain a PriceList attribute that maps product names to money. The types of
these attributes can be treated as mathematical functional mappings, such as ProductName-->Money.

A type establishes a behavioral specification for classes. A class that supports the operations defined
by a type is said to implement the type; this relationship can be shown as a form of refinement
relationship from the class to the type that it implements.

4.6.2 Notation

A type shown as a stereotype of a class symbol with the stereotype «type».

A type may contain lists of abstract attributes and of operations.

A type may contain a context and specifications of its operations accordingly.

4.7 Interfaces

An interface is the use of a type to describe the externally-visible behavior of a class, component, or
other entity (including summarization units such as packages).

4.7.1 Notation

An interface may be displayed using a small circle with the name of the type. This notation stresses the
operations provided by the type. An interface may supply one or more operations. The circle may be
attached to classes (or higher-level containers, such as packages that contain the classes) that support it
by a solid line. This indicates that the class provides all of the operations in the interface type (and
possibly more). The operations provided are not shown on the circle notation; use the full rectangle
symbol to show the list of operations. A class that requires the operations in the interface may be
attached to the circle by a dashed arrow. The dashed arrow indicates a sufficiency test: if the type
provides at least these operations then a class that realizes it will work. The dependent class is not
required to actually use all of the operations.

An interface is a type and may also be shown using the full rectangle symbol with compartments. The
circle form may be regarded as a shorthand notation.

4.7.2 Example

Figure 9. Interface notation on class diagram

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (7 of 35) [09/09/2000 12:58:31 PM]



4.8 Parameterized Class (Template)

4.8.1 Semantics

A template is the descriptor for a class with one or more unbound formal parameters. It therefore
defines a family of classes, each class specified by binding the parameters to actual values. Typically
the parameters represent attribute types, but they can also represent integers, other types, or even
operations. Attributes and operations within the template are defined in terms of the formal parameters
so they too become bound when the template itself is bound to actual values.

A template is not a class. Its parameters must be bound to actual values to create a bound form that is a
class. Only a class can be subclassed or associated to (a one-way association from the template to
another class is permissible, however). A template may be a subclass of an ordinary class; this implies
that all classes formed by binding it are subclasses of the given superclass.

4.8.2 Notation

A small dashed rectangle is superimposed on the upper right-hand corner of the rectangle for the class.
The dashed rectangle contains an parameter list of formal parameters for the class and their
implementation types. The list must not be empty, although it might be suppressed in the presentation.
The name, attributes, and operations of the parameterized class appear as normal in the class rectangle,
but they may include occurrences of the formal parameters. Occurrences of the formal parameters can
also occur inside of a context for the class, for example, to show a related class identified by one of the
parameters

4.8.3 Presentation options

The parameter list may be comma-separated or it may be one per line.

Parameters are restricted attributes, with the syntax

name : type

where name is an identifier for the parameter with scope inside the template;

where type is a string designating a TypeExpression for the parameter.

The default type of a parameter is TypeExpression (or class as it is somewhat confusingly declared in
C++, even though they allow int's and other non-classes). If the type name is omitted, it is assumed to
be TypeExpression (that is, the argument itself must be an implementation type, such as a class

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (8 of 35) [09/09/2000 12:58:31 PM]



name). Other parameter types (such as Integer) should be explicitly shown.

4.8.4 Example

Figure 10. Template notation with use of parameter as a reference

4.9 Bound Element

4.9.1 Semantics

A template cannot be used directly in an ordinary relationship such as generalization or association,
because it has a free parameter that is not meaningful outside of a scope that declares the parameter.
To be used, a template's parameters must be bound to actual values. The actual value for each
parameter is an expression defined within the scope of use. If the referencing scope is itself a template,
then the parameters of the referencing template can be used as actual values in binding the referenced
template, but the parameter names in the two templates cannot be assumed to correspond, because they
have no scope outside of their respective templates.

4.9.2 Notation

A bound element is indicated by a text syntax in the name string of an element, as follows:

Template-name '<' value-list '>'

where value-list is a comma-delimited non-empty list of value expressions;

where Template-name is identical to the name of a template.

For example, VArray<Point,3> designates a class described by the template Varray.

The number and types of the values must match the number and types of the template parameters for

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (9 of 35) [09/09/2000 12:58:31 PM]



the template of the given name.

The bound element name may be used anywhere that an element name of the parameterized kind could
be used. For example, a bound class name could be used within a class symbol on a class diagram, as
an attribute type, or as part of an operation signature.

Note that a bound element is fully specified by its template, therefore its content may not be extended;
declaration of new attributes or operations for classes is not permitted, for example, but a bound class
could be subclassed and the subclass extended in the usual way.

The relationship between the bound element and its template may alternatively be shown by a
refinement relationship with the stereotype «bind». The arguments are shown on the relationship. In
this case the bound form may be given a name distinct from the template.

4.9.3 Style guidelines

The attribute and operation compartments are normally suppressed within a bound class, because they
must not be modified in a bound template.

4.9.4 Example

See Figure 10.

4.10 Utility

A utility is a grouping of global variables and procedures in the form of a class declaration. This is not
a fundamental construct but a programming convenience. The attributes and operations of the utility
become global variables and procedures. A utility is modeled as a stereotype of a class.

4.10.1 Semantics

The instance-scope attributes and operations of a utility are interpreted as global attributes and
operations. It is inappropriate for a utility to declare class-scope attributes and operations because the
instance-scope members are already interpreted as being at class scope.

4.10.2 Notation

Shown as the stereotype «utility» of Class. It may have both attributes and operations, all of which are
treated as global attributes and operations.

4.10.3 Example

Figure 11. Notation for utility

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (10 of 35) [09/09/2000 12:58:31 PM]



4.11 Metaclass

4.11.1 Semantics

A metaclass is a class whose instances are classes.

4.11.2 Notation

Shown as the stereotype «metaclass» of Class.

4.12 Class Pathnames

4.12.1 Notation

Class symbols (rectangles) serve to define a class and its properties, such as relationships to other
classes. A reference to a class in a different package is notated by using a pathname for the class, in the
form:

package-name :: class-name

References to classes also appear in text expressions, most notably in type specifications for attributes
and variables. In these places a reference to a class is indicated by simply including the name of the
class itself, including a possible package name, subject to the syntax rules of the expression.

4.12.2 Example

Figure 12. Pathnames for classes in other packages

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (11 of 35) [09/09/2000 12:58:31 PM]



4.13 Importing a package

4.13.1 Semantics

A class in another package may be referenced. On the package level, the \xc7 imports\xc8 dependency
shows the packages whose classes may be referenced within a given package or packages recursively
embedded within it. The target references must be exported by the target package. Note that exports
are not recursive; they must be propagated up across each level of containment. Imports are recursive
within inner levels of containment. (See the semantics document for full details.)

4.13.2 Notation

The imports dependency is displayed as a dependency arrow from the referencing package to the
package containing the target of the references. The arrow has the stereotype «imports».

A package controls the external visibility of its contents. An item can be imported into package if it is
made visible (''exported'') by its declaring package. There is no special UML notation for the visibility
of items within a package. Rather a view can be constructed showing the publicly available items from
a package.

4.13.3 Example

Figure 13. Imports dependency among packages

4.14 Attribute

Used to show attributes in classes. A similar syntax is used to specify qualifiers, template parameters,

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (12 of 35) [09/09/2000 12:58:32 PM]



operation parameters, and so on (some of these omit certain terms).

4.14.1 Semantics

Note that an attribute is semantically equivalent to a composition association.

The type of an attribute may be complex, such as array[String] of Point. In some specification
languages, it may also be expressed as a mapping expressed without a specific commitment to data
structure, such as String -->Point (where the arrow represents the standard mathematical concept of
functional mapping). This form expresses what D'Souza calls ''parameterized queries'' using the syntax
location(String):Point in his Catalysis method. In any case, the details of the attribute type
expressions are not specified by UML; they depend on the expression syntax supported by the
particular specification or programming language being used.

4.14.2 Notation

An attribute is shown as a text string that can be parsed into the various properties of an attribute
model element. The default syntax is:

visibility name : type-expression = initial-value { property-string }

where visibility is one of:

+ public visibility

# protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined). A tool
should assign visibilities to new attributes even if the visibility is not shown.
The visibility marker is a shorthand for a full visibility property specification
string.

Additional kinds of visibility might be defined for certain programming
languages, such as C++ implementation visibility (actually all forms of
nonpublic visibility are language-dependent). Such visibility must be
specified by property string or by a tool-specific convention.

where name is an identifier string;

where type-expression is a language-dependent specification of the implementation type
of an attribute;

where initial-value is a language-dependent expression for the initial value of a newly
created object. The initial value is optional (the equal sign is also omitted). An explicit
constructor for a new object may augment or modify the default initial value;

where property-string indicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified);

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (13 of 35) [09/09/2000 12:58:32 PM]



A class-scope attribute is shown by underlining the entire string. The notation justification is that a
class-scope attribute is an instance value in the executing system, just as an object is an instance value,
so both may be designated by underlining. An instance-scope attribute is not underlined; that is the
default.

class-scope-attribute

4.14.3 Presentation options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool responsibility
whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon or by
sorting the elements by group.

A tool may show the individual fields of an attribute as columns rather than a continuous string.

The syntax of the attribute string can be that of a particular programming language, such as C++ or
Smalltalk. Specific tagged properties may be included in the string.

Particular attributes within a list may be suppressed (see List Compartment).

4.14.4 Style guidelines

Attribute names typically begin with a lowercase letter.

Attribute names in plain face.

4.14.5 Example

+size: Area = (100,100)
#visibility: Boolean = invisible
+default-size: Rectangle
#maximum-size: Rectangle
-xptr: XWindow*

4.15 Operation

Used to show operations in classes.

4.15.1 Notation

An operation is shown as a text string that can be parsed into the various properties of an operation
model element. The default syntax is:

visibility name ( parameter-list ) : return-type-expression { property-string }

where visibility is one of:

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (14 of 35) [09/09/2000 12:58:32 PM]



+ public visibility

# protected visibility

- private visibility

The visibility marker may be suppressed. The absence of a visibility marker
indicates that the visibility is not shown (not that it is undefined). A tool
should assign visibilities to new attributes even if the visibility is not shown.
The visibility marker is a shorthand for a full visibility property specification
string.

Additional kinds of visibility might be defined for certain programming
languages, such as C++ implementation visibility (actually all forms of
nonpublic visibility are language-dependent). Such visibility must be
specified by property string or by a tool-specific convention.

where name is an identifier string;

where return-type-expression is a language-dependent specification of the
implementation type of the value returned by the operation. If the return-type is omitted if
the operation does not return a value (C++ void);

where parameter-list is a comma-separated list of formal parameters, each specified using
the syntax:

name : type-expression = default-value

where name is the name of a formal parameter;

where type-expression is the (language-dependent) specification of an
implementation type;

where default-value is an optional value expression for the parameter,
expressed in and subject to the limitations of the eventual target language;

where property-string indicates property values that apply to the element. The property
string is optional (the braces are omitted if no properties are specified);

A class-scope operation is shown by underlining the entire string. An instance-scope operation is the
default and is not marked.

4.15.2 Presentation options

The type expression may be suppressed (but it has a value in the model).

The initial value may be suppressed, and it may be absent from the model. It is a tool responsibility
whether and how to show this distinction.

A tool may show the visibility indication in a different way, such as by using a special icon or by
sorting the elements by group.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (15 of 35) [09/09/2000 12:58:32 PM]



A tool may show the individual fields of an attribute as columns rather than a continuous string.

The syntax of the attribute string can be that of a particular programming language, such as C++ or
Smalltalk. Specific tagged properties may be included in the string.

4.15.3 Style guidelines

Attribute names typically begin with a lowercase letter.

Attribute names in plain face.

An abstract operation may be shown in italics.

4.15.4 Example

Figure 14. Operation list with a variety of operations

4.16 Association

Binary associations are shown as lines connecting class symbols. The lines may have a variety of
adornments to shown their properties. Ternary and higher-order associations are shown as diamonds
connected to class symbols by lines.

4.17 Binary Association

4.17.1 Notation

A binary association is drawn as a solid path connecting two class symbols (both ends may be
connected to the same class, but the two ends are distinct). The path may consist of one or more
connected segments. The individual segments have no semantic significance but may be graphically
meaningful to a tool in dragging or resizing an association symbol. A connected sequences of
segments is called a path.

The end of an association where it connects to a class is called an association role. Most of the
interesting information about an association is attached to its roles. See the section on Association
Role for details.

The path may also have graphical adornments attached to the main part of the path itself. These
adornments indicate properties of the entire association. They may be dragged along a segment or
across segments but must remain attached to the path. It is a tool responsibility to determine how close
association adornments may approach a role so that confusion does not occur. The following kinds of
adornments may be attached to a path:

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (16 of 35) [09/09/2000 12:58:32 PM]



association name

Designates the (optional) name of the association.

Shown as a name string near the path. The string may have an optional small
black solid triangle in it; the point of the triangle indicates the direction in
which to read the name. The name-direction arrow has no semantics
significance; it is purely descriptive. The classes in the association are
ordered as indicated by the name-direction arrow. (Note that there is no need
for a name direction property on the association model; the ordering of the
classes within the association is the name direction. This convention works
even with n-ary associations.) A stereotype keyword within guillemets may
be placed above or in front of the association name. A property string may be
placed after or below the association name.

association class symbol

Designates an association that has class-like properties, such as attributes,
operations, and other associations. This is present if and only if the
association is an association class.

Shown as a class symbol attached to the association path by a dashed line.

The association path and the association class symbol represent the same
underlying model element which has a single name. The name may be
placed on the path, in the class symbol, or on both (but they must be the
same name).

Logically the association class and the association are the same semantic
entity, but they are graphically distinct. The association class symbol can be
dragged away from the line but the dotted line must remain attached to both
the path and the class symbol.

4.17.2 Presentation options

When two paths cross, the crossing may optionally be shown with a small semicircular jog to indicate
that the paths do not intersect (as in electrical circuit diagrams).

4.17.3 Style guidelines

Lines may be drawn at any angle. One popular style is to draw straight paths between icons whenever
possible. Another popular style is to have all lines be horizontal or vertical (orthogonal grid), using
multiple segments to compose paths when necessary. In any case the user should be consistent.

4.17.4 Options

Or-association. An or-constraint indicates a situation in which only one of several potential
associations may be instantiated at one time for any single object. This is shown as a dashed line
connecting two or more associations, all of which must have a class in common, with the constraint

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (17 of 35) [09/09/2000 12:58:32 PM]



string ''{or}'' labeling the dashed line. Any instance of the class may only participate in at most one of
the associations at one time. (This is simply a particular use of the constraint notation.)

4.17.5 Example

Figure 15. Association notation

4.18 Association Role

An association role is simply an end of an association where it connects to a class. The role is part of
the association, not part of the class. Each association has two or more roles. Most of the interesting
details about an association are attached to its roles.

4.18.1 Notation

The path may have graphical adornments at each end where the path connects to the class symbol. The
end of an association attached to a class is called a role. These adornments indicate properties of the
role. The adornments are part of the association symbol, not part of the class symbol. The role
adornments are either attached to the end of the line or near the end of the line and must drag with it.
The following kinds of adornments may be attached to a role:

multiplicity - see detail section. Multiplicity may be suppressed on a particular role or for
an entire diagram. In an incomplete model the multiplicity may be unspecified in the
model itself, in which case it must be suppressed in the notation.

ordering - if the multiplicity is greater than one, then the set of related elements can be
ordered or unordered. The default is unordered (they form a set). Various kinds of
ordering can be specified as a constraint on the role. The declaration does not specify how

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (18 of 35) [09/09/2000 12:58:32 PM]



the ordering is established or maintained; operations that insert new elements must make
provision for specifying their position either implicitly (such as at the end) or explicitly.
Possible values include:

unordered -- the elements form an unordered set. This is the default and need
not be shown explicitly.

ordered -- the elements are ordered into a list. This generic specification
includes all kinds of ordering. This may be specified by a keyword
constraint: ''{ordered}''.

An ordered relationship may be implemented in various ways but this is normally
specified as a language-specified code generation property to select a particular
implementation.

At implementation level, sorting may also be specified. It does not add new semantic
information but it expresses a design decision:

sorted -- the elements are sorted based on their internal values. The actual
sorting rule is best specified as a separate constraint.

qualifier - see detail section. Qualifier is optional but not suppressible.

navigability

An arrow may be attached to the end of the path to indicate that navigation is
supported toward the class attached to the arrow. Arrows may be attached to
zero, one, or two ends of the path. In principle arrows could be shown
whenever navigation is supported in a given direction. In practice it is
sometimes convenient to suppress some of the arrows and just show
exceptional situations. Here are some options on showing navigation arrows:

Presentation option 1: Show all arrows. The absence of an arrow indicates
navigation is not supported.

Presentation option 2: Suppress all arrows. No inference can be drawn about
navigation. This is similar to any situation in which information is
suppressed from a view.

Presentation options 3: Suppress arrows for associations with navigability in
both directions; show arrows only for associations with one-way
navigability. In this case the two-way navigability cannot be distinguished
from no-way navigation, but the latter case is normally rare or nonexistent in
practice. This is yet another example of a situation in which some
information is suppressed from a view.

aggregation indicator

A hollow diamond is attached to the end of the path to indicate aggregation.
The diamond may not be attached to both ends of a line, but it need not be

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (19 of 35) [09/09/2000 12:58:32 PM]



present at all. The diamond is attached to the class that is the aggregate. The
aggregation is optional but not suppressible.

If the diamond is filled, then it signifies the strong form of aggregation
known as composition.

rolename

A name string near the end of the path. It indicates the role played by the
class attached to end of the path near the rolename. The rolename is optional
but not suppressible.

Other properties can be specified for association roles but there is no graphical syntax for them. To
specify such properties use the constraint syntax near the end of the association path (a text string in
braces). Examples of such other properties include mutability.

4.18.2 Presentation options

If there are two or more aggregations to the same aggregate, they may be drawn as a tree by merging
the aggregation end into a single segment. This requires that all of the adornments on the aggregation
ends be consistent. This is purely a presentation option; there are no additional semantics to it.

4.18.3 Style guidelines

If there are multiple adornments on a single role, they are presented in the following order, reading
from the end of the path attached to the class toward the bulk of the path:

qualifier

aggregation symbol

navigation arrow

Rolenames and multiplicity should be placed near the end of the path so that they are not confused
with a different association. They may be placed on either side of the line. It is tempting to specify that
they will always be placed on a given side of the line (clockwise or counterclockwise) but this is
sometimes overridden by the need for clarity in a crowded layout. A rolename and a multiplicity may
be placed on opposite sides of the same role, or they may be placed together (for example, ''*
employee'').

4.18.4 Example

Figure 16. Various adornments on association roles

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (20 of 35) [09/09/2000 12:58:32 PM]



4.19 Multiplicity

A multiplicity string specifies the range of allowable cardinalities that a set may assume. Multiplicity
specifications may be given for roles within associations, parts within composites, repetitions, and
other purposes. Essentially a multiplicity is a subset of the nonnegative open integers.

4.19.1 Notation

A multiplicity specification is shown as a text string comprising a comma-separated sequence of
integer intervals, where an interval represents a (possibly infinite) range of integers, in the format:

lower-bound .. upper-bound

where lower-bound and upper-bound are literal integer values, specifying the closed (inclusive) range
of integers from the lower bound to the upper bound. In addition, the star character (*) may be used for
the upper bound, denoting an unlimited upper bound. In a parameterized context (such as a template)
the bounds could be expressions but they must evaluate to literal integer values for any actual use.
Unbound expressions that do not evaluate to literal integer values are not permitted.

If a single integer value is specified, then the integer range contains the single integer value.

If the multiplicity specification comprises a single star (*), then it denotes the unlimited nonnegative
integer range, that is, it is equivalent to *..* = 0..* (zero or more).

4.19.2 Style guidelines

Intervals should preferably be monotonically increasing. For example, ''1..3,7,10'' is preferable to
''7,10,1..3''.

Two contiguous intervals should be combined into a single interval. For example, ''0..1'' is preferable
to ''0,1''.

4.19.3 Example

0..1

1

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (21 of 35) [09/09/2000 12:58:32 PM]



0..*

*

1..*

1..6

1..3,7..10,15,19..*

4.20 Qualifier

A qualifier is an association attribute or tuple of attributes whose values serve to partition the set of
objects associated with an object across an association.

4.20.1 Notation

A qualifier is shown as a small rectangle attached to the end of an association path between the final
path segment and the symbol of the class that it connects to. The qualifier rectangle is part of the
association path, not part of the class. The qualifier rectangle drags with the path segments. The
qualifier is attached to the source end of the association; that is, an object of the source class together
with a value of the qualifier uniquely select a partition in the set of target class objects on the other end
of the association.

The multiplicity attached to the target role denotes the possible cardinalities of the set of target objects
selected by the pairing of a source object and a qualifier value. Common values include ''0..1'' (a
unique value may be selected, but every possible qualifier value does not necessarily select a value),
''1'' (every possible qualifier value selects a unique target object, therefore the domain of qualifier
values must be finite), and ''*'' (the qualifier value is an index that partitions the target objects into
subsets).

The qualifier attributes are drawn within the qualifier box. There may be one or more attributes shown
one to a line. Qualifier attributes have the same notation as class attributes, except that initial value
expressions are not meaningful.

It is permissible (although somewhat rare) to have a qualifier on each end of a single association.

4.20.2 Presentation options

A qualifier may not be suppressed (it provides essential detail whose omission would modify the
inherent character of the relationship).

A tool may use a lighter line for qualifier rectangles than for class rectangles to distinguish them
clearly.

4.20.3 Style guidelines

The qualifier rectangle should be smaller than the attached class rectangle, although this is not always
practical.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (22 of 35) [09/09/2000 12:58:32 PM]



4.20.4 Example

Figure 17. Qualified associations

4.21 Association Class

An association class is an association that also has class properties (or a class that has association
properties). Even though it is drawn as an association and a class, it is really just a single model
element.

4.21.1 Notation

An association class is shown as a class symbol (rectangle) attached by a dashed line to an association
path. The name in the class symbol and the name string attached to the association path are redundant
and should be the same. The association path may have the usual adornments on either end. The class
symbol may have the usual contents. There are no adornments on the dashed line.

4.21.2 Presentation options

The class symbol may be suppressed (it provides subordinate detail whose omission does not change
the overall relationship. The association path may not be suppressed.

4.21.3 Style guidelines

The attachment point should not be near enough to either end of the path that it appears to be attached
to the end of the path or to any of the role adornments.

Note that the association path and the association class are a single model element and therefore have a
single name. The name can be shown on the path or the class symbol or both. If an association class
has only attributes but no operations or other associations, then the name may be displayed on the
association path and omitted from the association class symbol to emphasize its ''association nature.'' If
it has operations and other associations, then the name may be omitted from the path and placed in the
class rectangle to emphasize its ''class nature.'' In neither case are the actual semantics different.

4.21.4 Example

Figure 18. Association class

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (23 of 35) [09/09/2000 12:58:32 PM]



4.22 N-ary association

4.22.1 Semantics

An n-ary association is an association among 3 or more classes (a single class may appear more than
once). Each instance of the association is an n-tuple of values from the respective classes. A binary
association is a special case with its own notation.

Multiplicity for n-ary associations may be specified but is less obvious than binary multiplicity. The
multiplicity on a role represents the potential number of instance tuples in the association when the
other N-1 values are fixed.

An n-ary association may not contain the aggregation marker on any role.

4.22.2 Notation

An n-ary association is shown as a large diamond (that is, large compared to a terminator on a path)
with a path from the diamond to each participant class. The name of the association (if any) is shown
near the diamond. Role adornments may appear on each path as with a binary association. Multiplicity
may be indicated, however, qualifiers and aggregation are not permitted.

An association class symbol may be attached to the diamond by a dashed line. This indicates an n-ary
association that has attributes, operations, and/or associations.

4.22.3 Style guidelines

Usually the lines are drawn from the points on the diamond or the midpoint of a side.

4.22.4 Example

This example shows the record of a team in each season with a particular goalkeeper. It is assumed
that the goalkeeper might be traded during the season and can therefore appear with different teams.

Figure 19. Ternary association that is also an association class

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (24 of 35) [09/09/2000 12:58:32 PM]



4.23 Composition

Composition is a form of aggregation with strong ownership and coincident lifetime of part with the
whole. The multiplicity of the aggregate end may not exceed one (it is unshared). The aggregation is
unchangeable (once established the links may not be changed). Parts with multiplicity > 1 may be
created after the aggregate itself but once created they live and die with it. Such parts can also be
explicitly removed before the death of the aggregate.

Composition may be shown by a solid filled diamond as an association role adornment. Alternately
UML provides a graphically-nested form that is more convenient for showing composition in many
cases.

4.23.1 Semantics

Within a composite additional associations can be defined that are not meaningful within the system in
general. These represent patterns of connection that are meaningful only within the context of the
composite. Such associations can be thought of as generating quasiclasses (or qua-types as Bock and
Odell call them) that are specializations of the general classes; the specializations are defined only
inside the composite. In actual practice it often happens that one of the classes in the association does
not know about the association or the other class, so that the implementation need not actually use the
qua-class.

The entire system may be thought of as an implicit composite, so that any multiplicity specifications
within top-level classes restrict the cardinality of the classes in a particular execution; Embley's
singleton classes can be seen in that light.

4.23.2 Notation

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (25 of 35) [09/09/2000 12:58:32 PM]



Instead of using binary association paths using the composition aggregation adornment, composition
may be shown by graphical nesting of the symbols of the elements for the parts within the symbol of
the element for the whole. A nested class-like element may have a multiplicity within its composite
element. The multiplicity is shown in the upper right corner of the symbol for the part; if the
multiplicity mark is omitted then the default multiplicity is many. A nested element may have a
rolename within the composition; the name is shown in front of its type in the syntax:

rolename ':' classname

Alternately, composition is shown by a solid-filled diamond adornment on the end of an association
path attached to the element for the whole. The multiplicity may be shown in the normal way.

Another alternative is to show the composite as a graphical symbol containing its parts, but to draw an
association line from the composition symbol boundary to each of the parts within it. Rolenames and
multiplicity of the parts may be indicated for each of the parts; using this notation it is unnecessary to
display the aggregation diamond because the composition aggregation is specified by the nesting.

Note that attributes are, in effect, composition relationships between a class and the classes of its
attributes.

4.23.3 Design guidelines

This notation is applicable to ''class-like'' model elements: classes, types, nodes, processes, etc.

Note that a class symbol is a composition of its attributes and operations. The class symbol may be
thought of as an example of the composition nesting notation (with some special layout properties).
However, attribute notation subordinates the attributes strongly within the class, so it should be used
when the structure and identity of the attribute objects themselves is unimportant outside the class.

Be aware that state diagrams use different notation for composition than class diagrams. The
composition of a state from two or more substates is shown by partitioning the state region into
subregions by dashed lines. The simple nesting of states indicates state generalization.

4.23.4 Example

Figure 20. Different ways to show composition

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (26 of 35) [09/09/2000 12:58:32 PM]



4.24 Generalization

Generalization is the taxonomic relationship between a more general element and a more specific
element that is fully consistent with the first element and that adds additional information. It is used for
classes, packages, use cases, and other elements.

4.24.1 Notation

Generalization is shown as a solid-line path from the more specific element (such as a subclass) to the
more general element (such as a superclass), with a large hollow triangle at the end of the path where it
meets the more general element.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (27 of 35) [09/09/2000 12:58:32 PM]



A generalization path may have a text label in the following format:

discriminator : powertype

where discriminator is the name of a partition of the subtypes of the supertype. The
subtype is declared to be in the given partition;

where powertype is the name of a type whose instances are subtypes of another type,
namely the subtypes whose paths bear the powertype name. If a type symbol with the
same name appears in the model, it designates the same type; it should be shown with the
stereotype «powertype». For example, TreeSpecies is a powertype on the Tree type;
consequently instances of TreeSpecies (such as Oak or Birch) are also subtypes of Tree.

Either the discriminator, or the colon and powertype, or both may be omitted.

Note that the word type also includes both types and classes.

4.24.2 Presentation options

A group of generalization paths for a given superclass may be shown as a tree with a shared segment
(including triangle) to the superclass, branching into multiple paths to each subclass.

If a text label is placed on a generalization triangle shared by several generalization paths to
subclasses, the label applies to all of the paths. In other words, all of the subclasses share the given
properties.

4.24.3 Details

The existence of additional subclasses in the model that are not shown on a particular diagram may be
shown using an ellipsis (. . .) in place of a subclass. (Note: this does not indicate that additional classes
may be added in the future. It indicates that additional classes exist right now but are not being seen.)

Predefined constraints may be used to indicate semantic constraints among the subclasses. A
comma-separated list of keywords is placed in braces either near the shared triangle (if several paths
share a single triangle) or else near a dotted line that crosses all of the generalization lines involved.
The following keywords (among others) may be used:

overlapping

disjoint

complete

incomplete

4.24.4 Semantics

The following constraints are predefined:

overlapping A descendent may be descended from more than one of the subclasses.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (28 of 35) [09/09/2000 12:58:32 PM]



disjoint A descendent may not be descended from more than one of the subclasses.

complete All subclasses have been specified (whether or not shown). No additional
subclasses are expected.

incomplete Some subclasses have been specified but the list is known to be incomplete.
There are additional subclasses that are not yet in the model. The is a statement about the
model itself. Note that this is not the same as the ellipsis, which states that additional
subclasses exist in the model but are not shown on the current diagram.

The discriminator must be unique among the attributes and association roles of the given superclass.
Multiple occurrences of the same discriminator name are permitted and indicate that the subclasses
belong to the same partition.

Semantic variation points

There are different possible ways to interpret the semantics of generalization (as with other
constructs). Although there is a standard UML interpretation consistent with the operation of the major
object-oriented languages, there are purposes and languages that require a different interpretation.
Different semantics can be permitted by identifying semantic variation points and giving them names,
so that different users and tools could understand the variation being used (it is not assumed that all
tools will support this concepts). These are some semantic variations applicable to generalization:

Multiple inheritance. Whether a class may have more than one superclass.

Multiple classification. Whether an object may belong directly to more than one class.

Dynamic classification. Whether an object may change class during execution.

The ordinary UML semantics assumes multiple inheritance, no multiple classification, and no dynamic
classification, but most parts of the semantics and notation are not affected if these assumptions are
change.

4.24.5 Example

Figure 21. Styles of displaying generalization

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (29 of 35) [09/09/2000 12:58:32 PM]



Figure 22. Generalization with discriminators and constraints, separate target style

Figure 23. Generalization with power type, shared target style

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (30 of 35) [09/09/2000 12:58:32 PM]



4.25 Dependency

A dependency indicates a semantic relationship between two (or more) model elements. It relates the
model elements themselves and does not require a set of instances for its meaning. It indicates a
situation in which a change to the target element may require a change to the source element in the
dependency.

4.25.1 Notation

A dependency is shown as a dashed arrow from one model element to another model element that the
first element is dependent on. The arrow may be labeled with an optional stereotype and an optional
name.

4.25.2 Presentation options

If one of the elements is a note or constraint then the arrow may be suppressed (the note or constraint
is the source of the arrow).

4.25.3 Example

Figure 24. Various dependencies among classes

Figure 25. Dependencies among packages

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (31 of 35) [09/09/2000 12:58:32 PM]



4.26 Refinement Relationship

4.26.1 Semantics

The refinement relationship represents the fuller specification of something that has been already
specified at a certain level of detail. It is a commitment to certain choices consistent with the more
general specification but not required by it. It is a relationship between two descriptions of the same
thing at different levels of abstraction.

The evolution of a design may be described by refinement relationships. entire process of design is a
process of refinement. Note that refinement is a relationship between development artifacts and does
not imply any top-down development process. Refinement includes the following kinds of things (not
necessarily complete):

Relation between a type and a class that realizes it (realization).

Relation between an analysis class and a design class (design trace).

Relation between a high-level construct at a coarse granularity and a lower-level construct
at a finer granularity, such as a collaboration at two levels of detail (leveling of detail).

Relation between a construct and its implementation at a lower virtual layer, such as the
implementation of a type as a collaboration of lower-level objects (implementation).

Relation between a straightforward implementation of a construct and a more efficient but
more obscure implementation that accomplishes the same effect (optimization).

Note that refinement shows a relationship between two different views of something. You can use
either view but they are alternate ways of expressing the same thing under different conditions.
Examples include the relationship between an analysis type and a design class, between a scenario at a
high level and the same scenario broken into finer steps, and between a simple implementation of an
operation and an optimized implementation of the same operation.

A refinement relationship may also have a specification of how the more detailed version maps into
the more abstract version.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (32 of 35) [09/09/2000 12:58:32 PM]



4.26.2 Notation

Refinement may be shown as a dashed generalization symbol, that is, a dashed line with a closed
hollow triangular arrowhead on the end connected to more general element. A stereotype may be
attached to specify a particular kind of refinement. A note may be attached to the line stating the
mapping from the more specific form to the more general form.

Refinement within a given model can be shown as a dependency with the stereotype «refines» or one
of its more specific forms, such as «implements». Refinement between models may be modeled as an
invisible hyperlink supported by a dynamic tool. The refinement relationship may have a mapping
attached to it; the mapping will normally be reached via an invisible hyperlink from the relationship
path.

4.26.3 Example

Figure 26. Refinement

4.27 Derived Element

A derived element is one that can be computed from another one, but that is shown for clarity or that is
included for design purposes even though it adds no semantic information.

4.27.1 Notation

A derived element is shown by placing a slash (/) in front of the name of the derived element, such as
an attribute or a rolename.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (33 of 35) [09/09/2000 12:58:32 PM]



4.27.2 Style guidelines

The details of computing a derived element can be specified by a dependency with the stereotype
«derived». Usually it is convenient in the notation to suppress the dependency arrow and simply place
a constraint string near the derived element, although the arrow can be included when it is helpful.

4.27.3 Example

Figure 27. Derived attribute and derived association

4.28 Navigation Expression

UML notation provides a small language for expressing navigation paths in class models.

4.28.1 Notation

These forms can be chained together. The leftmost element must be an expression for an object or a set
of objects. The expressions are meant to work on sets of values when applicable.

set '.' selector

the selector is the name of an attribute in the objects of the set or the name of a role of the
target end of a link attached to the objects in the set. The result is the value of the attribute
or the related object(s). The result is a value or a set of values depending on the
multiplicity of the set and the association.

set '.' '~' selector

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (34 of 35) [09/09/2000 12:58:32 PM]



the selector is the name of a role on the source end of an association attached to the set of
objects. The result is the object(s) attached to the other side. This represents an inverse
relationships, that is, the use of the rolename in the "wrong way."

set '[' boolean-expression ']'

the boolean-expression is written in terms of objects within the set and values accessible
from them. The result is the subset of objects for which the boolean expression is true.

set '.' selector '[' qualifier-value ']'

the selector designates a qualified association that qualifies the set. The qualifier-value is
a value for the qualifier attribute. The result is the related object selected by the qualifier.
Note that this syntax is applicable to array indexing as a form of qualification.

4.28.2 Example

flight.pilot.training_hours > flight.plane.minimum_hours

company.employee [title = "Manager" and count (employee) > 10]

| Previous | Next | Notation TOC | getRational! |

Copyright © 1997 by Rational Software Corporation. All rights reserved.

UML Notation Guide v1.0 Chapter 4

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch4.html (35 of 35) [09/09/2000 12:58:32 PM]

http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch3.html
http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide_ch5.html
http://www.essaim.univ-mulhouse.fr/uml/documentation/version1.0/notation/notation_guide.html
http://www.rational.com/
http://www.rational.com/company/trademark.html

	www.essaim.univ-mulhouse.fr
	UML Notation Guide v1.0 Chapter 4


