
1

Finish with Recursion

CS211
Fall 2000

2

Another Recursive Descent Example

■ Goal: Determine if the
brackets () [] { } on a line
are balanced and properly
nested

■ Examples:
● legal: () [()]
● legal: () { } []
● illegal: ([)]
● illegal: (})

■ Recursive definition for
LegalExp

● The empty string is a
LegalExp

● If E is a LegalExp then
so are (E), [E], and {E}

● One or more LegalExps
on a line make a
LegalExp

3

Step 1: Build a Tokenizer

■ We want to divide an input
line (a String) into tokens

● The Java API on the
Web includes a java.util
package

● This package contains
java.util.StringTokenizer

■ StringTokenizer has a
nextToken() method that
throws
NoSuchElementException
if it runs out of tokens

■ The StringTokenizer
constructor takes

● an input string,
● a list of delimiters (token

separators), and
● a boolean flag (true

implies that delimiters
are also tokens)

■ StringTokenizer also has
other methods

● countTokens()
● hasMoreTokens()
● a couple others

4

Using StringTokenizer

■ Inheritance:
● We make our own

tokenizer by extending
StringTokenizer

● Existing methods are
either inherited or
overridden

■ Using inheritance:
● Either we override all

methods of
StringTokenizer

● Or we accept some
inherited methods with
“surprising” behavior

■ Can StringTokenizer be
used directly? Almost…

● We want to skip all
“uninteresting” tokens

● Would like an eol token

■ We can alter
StringTokenizer to do these
extra things by using either

● inheritance or
● aggregation

5

Tokenizer Code

■ Aggregation
● We make our

own tokenizer by
using a
StringTokenizer
within our
tokenizer class

● Our class has
only the methods
that we choose to
write

▲ nextToken()
▲ pushBack()

class MyTokenizer {
private StringTokenizer tokenizer;

private String currentToken;
private boolean pushed;

public static String PARENS = "()[]{}";

public MyTokenizer (String inputString) {

tokenizer = new
StringTokenizer(inputString,PARENS,true);

currentToken = null;
pushed = false;

}

public void pushBack () {
pushed = true;
}

6

nextToken()

public String nextToken () {
if (pushed) {

pushed = false;
return currentToken;

}
try {

do {

currentToken = tokenizer.nextToken();
} while (PARENS.indexOf(currentToken) == -1);

} catch (NoSuchElementException e) {
currentToken = "eol";

}

return currentToken;
}

}

2

7

Step 2: Build a Parser

■ Follow the recursive
definition

● The empty string is
a LegalExp

● If E is a LegalExp
then so are (E), [E],
and {E}

● One or more
LegalExps on a
line make a
LegalExp

class LegalExpParser {
MyTokenizer in;

public void legalExp () {
String matcher;

String token = in.nextToken();
while ("([{".indexOf(token) != -1) {

if (token.equals("(")) matcher = ")";

else if (token.equals("[")) matcher = "]";
else matcher = "}";

legalExp();
token = in.nextToken();
if (!token.equals(matcher)) error;

token = in.nextToken();
}

in.pushBack();
}

8

The Rest of the Code

public void eval (String inputString) {
in = new MyTokenizer(inputString);

legalExp();
if (in.nextToken().equals("eol")) return;

error;
}

} // end LegalExpParser

// Code using a LegalExpParser

// The String string is to be evaluated for brackets
LegalExpParser p = new LegalExpParser();
try {

p.eval(string);
System.out.println(string + " is OK");

} catch (IllegalArgumentException e) {
System.out.println(e.getMessage());

}

9

How Recursion Works

int fact (int n) {
if (n==0) return 1;
else return n*fact(n-1);}

■ How do we prevent the
different ‘n’s from
overwriting each other?

● Give them different
locations

■ How do we know which ‘n’
to compute with at each
moment?

● Organize the ‘n’s into a
stack; always use the
topmost value

■ How does a method-call
know where to return to?

● Save a return address
before making the call

■ How does the callee return
the result to the caller?

● Result is left on top of
the stack

■ How do we keep track of all
this information?

● Organize the
information for each call
into a frame

10

Stack Frames

p1 calls p2 which calls p3

■ FBR (Frame Base
Register) points into
current (topmost) frame

■ Values within frames are
addressed via offsets from
FBR

■ SP (Stack Pointer) moves
up and down as temporary
values are pushed and
popped

larger
addresses

frame 1

frame 2

frame 3

p1

p2

p3

11

Typical Stack Frame

■ One slot for each
parameter (values
computed and pushed by
caller)

■ One slot for return address
(where to continue
execution after method is
done)

■ One slot for each local
variable (allocated by
callee)

■ Temporaries are
pushed/popped on top of
frame

FBR

SP

return value
saved FBR

6

5

4

3

2

1

7

8

parameters

return address

local variables

temporaries

int foo (int a, int b, int c) {
int w,x,y,z;
…
}

31 2

5 8

12

How Exceptions Work

■ What a Java program does
when an exception occurs

while not within a try that has
a matching catch for this
exception {
Pop the top frame off the
stack;
}

Execute the first matching
catch-block;

Execute the finally block if
there is one;

Continue with following code;

■ When running a Java
application

● There is a “first” frame
that catches all
exceptions

● It prints some semi-
helpful information and
then halts

