
1

Recursion

CS211

Fall 2000

2

Recursive Functions

■ A recursive function is a function that is defined in
terms of itself

■ In practice:

● The result for “big” inputs is defined in terms of
results for smaller inputs

● The results for the smallest inputs are defined
independently — the Base Case(s)

■ Trivial example:

● n! = n times (n-1)!

● Base case: 0! = 1

3

Simple Recursive Programs

■ Most programming
languages allow recursion
(Algol 60 was one of the
first)

■ Note the base cases
● Without a base case, a

recursive program runs
forever

int factorial (int n) {
if (n == 0) return 1; // Base Case
return n*factorial(n-1);
}

int fibonacci (int n) {
if (n <= 1) return 1; // Base Case
return fibonacci(n-1)+fibonacci(n-2);
}

4

Example: Squaring without Multiply

■ n2 = (n–1)2 + 2n – 1

int square (int n) {
if (n == 0) return 0;

return square(n-1) + n + n – 1;
}

■ All the examples so far are
trivial

■ They can be done more
efficiently by using a loop

■ Any recursive program can
be converted to an iterative
program that performs the
same computation

■ But, many program are
easier to write (and
maintain) if they are written
recursively

5

Two Major Uses of Recursion

Divide & Conquer Algorithms

■ Divide & Conquer is an
algorithm-design technique

● It uses recursion

■ The resulting algorithms
are

● relatively easy to design
and

● relatively easy to
analyze

Recursive Descent Parsing

■ Parse: to divide language
into small components that
can be analyzed

■ In Computer Science
● Compilers must parse

source code to be able
to translate it into object
code

● Any application that
processes commands
must be able to parse
the commands

6

QuickSort: Recursion on Arrays

QuickSort is based on Divide & Conquer

Intuitive idea:

■ Given an array A and a pivot value p

■ Partition A into two subarrays L and R
● L contains only elements less than or equal to p

● R contains only elements greater than p

■ Sort L and R separately Recursion!!!

■ Concatenate L and R to produce a sorted result

2

7

QuickSort Example

20, 31, 24, 19, 45, 56, 4, 65, 5, 72, 14, 99

pivot partition

19 4
5

14
31 2445

56
65

72

99
20

4, 5, 14, 19 24, 31, 45, 56, 65, 72, 99

sort (recursively)sort (recursively)

20

4, 5, 14, 19, 20, 24, 31, 45, 56, 65, 72, 99

concatenate

8

QuickSort Advantages

■ Fast (fastest known method for most sorting
situations)

■ Sorting can be done in-place (no extra arrays
needed)

● But how can we partition in-place?
● Simplified version: How do we efficiently get the

blue balls all on the left?

9

In-Place Partitioning

■ Keep two indices i and j

● Invariant:
all balls to left of i are blue
all balls to right of j are red

● Move the two indices as long as invariant holds

can’t move the indices any farther

10

Swapping to Maintain Invariant

can’t move the indices any fartherSwap

Swap

11

Swap

Done When Indices Cross

■ Once indices cross, partitioning is done

■ For QuickSort
● blue = less than or equal to pivot

● red = greater than or equal to pivot
12

What Should We Use for the Pivot?

■ Ideal: Choose the median
● Splits set exactly in half
● But way too hard to find

■ Poor strategies
● Choose leftmost

element or choose
rightmost element

● Either works well for
arrays in random order

● But both work very
badly for sorted arrays

■ Effective strategies
● Choose middle element
● Choose a random

element

● Choose median of
leftmost, middle, and
rightmost elements

3

13

QuickSort Code

static int partition

(int[] A, int low, int high) {
int pivot = A[(low+high)/2];
int i = low;
int j = high;
while (true) {

while (i < high && A[i] < pivot)
i++;

while (j > low && A[j] > pivot)
j – –;

if (i < j) swap(A, i++, j – –);
else break;
}

return i;
}

static void swap (int[] A, int i, int j) {

int temp = A[i];
A[i] = A[j];
A[j] = temp;
}

private static void quickSort
(int[] A, int low, int high) {

if (low < high) {
int p = partition(A,low,high);
quickSort(A,low,p – 1);
quickSort(A,p,high);
}

}

public static void quickSort (int[] A)
{quickSort(A,0,A.length – 1);}

14

What About Equal Elements?

static int partition

(int[] A, int low, int high) {
int pivot = A[(low+high)/2];
int i = low;
int j = high;
while (true) {

while (i < high && A[i] < pivot)
i++;

while (j > low && A[j] > pivot)
j – –;

if (i < j) swap(A, i++, j – –);
else break;
}

return i;
}

■ Elements equal to the pivot
element are placed on both
sides

■ We even swap equal
elements

● Why?
● What happens if we sort

an array with all equal
elements?

● Why would we want to?

15

Using Sentinels to Improve Partition

static int partition

(int[] A, int low, int high) {
int pivot = A[(low+high)/2];
if (A[low] > A[high]) swap(A,low,high);
if (pivot < A[low]) pivot = A[low];
else if (A[high] < pivot) pivot = A[high];
// A[low] is <= pivot
// A[high] is >= pivot

int i = low; int j = high;
while (true) {

do {i++} while (A[i] < pivot);
do {j – –} while (A[j] > pivot) ;
if (i < j) swap(A,i,j);
else break;
}

return i;
}

■ We can’t run off the right
end because A[high] is
greater than or equal to the
pivot (so i has to stop)

■ We can’t run off the left end
because A[low] is less than
or equal to the pivot (so j
has to stop)

■ In general: Anything that
speeds up the partition
loop speeds up the
algorithm

16

Improvements to QuickSort

■ Can rewrite using Comparable instead of int

● Allows sorting of any array containing objects
that implement the Comparable interface

● But this QuickSort can’t sort an int-array
■ It pays to stop the recursion when low and high are

“pretty close”

● If this is done, each element is near its final
position

● It’s faster to then sort the entire array in a
postprocessing step using a simpler sorting
method (InsertionSort)

17

Some Comments on Recursion

■ Tail Recursion
● Occurs when the only

recursive call appears
just before the return

● Tail recursion can be
easily converted to a
loop

● Some compilers and
interpreters do this
automatically

■ A common error when
using recursion is to
neglect to establish a base
case

■ Recursion and Induction
are closely related

● An inductive proof is
used to show a
recursive algorithm is
correct

18

A Simple Inductive Proof

Theorem The sum of the first n integers is n(n+1)/2
Proof

Basis: The sum of the first 1 integer is 1(1+1)/2.

Induction Hypothesis: The sum of the first k integers is
k(k+1)/2 for k<n.

The sum of the first n integers can be written as
[1+…+ n –1] + n.

By the IH for k=n–1, this is the same as
[(n –1)(n)/2] + n

which is equal to n(n+1)/2.

4

19

An Invalid Inductive Proof

Theorem All cars are the same color.

Proof

Basis: All cars in a set of size 1 are the same color

Induction Hypothesis: All cars in sets of size k<n are the same color

Consider a set of n cars. Take one car out; this leaves n-1 cars which, by
the IH, are all the same color. Put that car back and take out another.
Again, by the IH, all the remaining cars are the same color. Thus the first
car I took out must be the same color as all the rest. By induction, all cars
must be the same color.

Corollary All cars are blue.

Proof
I have a blue car and all cars are the same color, so all cars must be blue.

■ What went wrong here?

