Recursion	
	CS211

Recursive Functions

- A recursive function is a function that is defined in terms of itself
- In practice:
- The result for "big" inputs is defined in terms of results for smaller inputs
- The results for the smallest inputs are defined independently - the Base Case(s)
■ Trivial example:
- $n!=n$ times ($n-1$)!
- Base case: $0!=1$

Simple Recursive Programs	
- Most programming languages allow recursion (Algol 60 was one of the first) - Note the base cases - Without a base case, a recursive program runs forever	```int factorial (int \(n\)) \{ if (\(n==0\)) return 1 ; // Base Case return \(\mathrm{n}^{*}\) factorial \((\mathrm{n}-1)\); \} int fibonacci (int n) \{ if (\(\mathrm{n}<=1\)) return 1; // Base Case return fibonacci(\(\mathrm{n}-1)+\) fibonacci(\(\mathrm{n}-2\)); \}```

Example: Squaring without Multiply

- $n^{2}=(n-1)^{2}+2 n-1$
int square (int n) \{
if $(\mathrm{n}==0)$ return 0 ;
- All the examples so far are trivial
- They can be done more return square $(n-1)+n+n-1$; efficiently by using a loop
- Any recursive program can be converted to an iterative program that performs the same computation
- But, many program are easier to write (and maintain) if they are written recursively

4

Two Major Uses of Recursion	
Divide \& Conquer Algorithms	Recursive Descent Parsing
Divide \& Conquer is an algorithm-design technique - It uses recursion The resulting algorithms are - relatively easy to design and - relatively easy to analyze	Parse: to divide language into small components that can be analyzed In Computer Science - Compilers must parse source code to be able to translate it into object code - Any application that processes commands must be able to parse the commands
5	

Using Sentinels to Improve Partition	
```static int partition (int[ ] A, int low, int high) { int pivot = A[(low+high)/2]; if (A[low] > A[high]) swap(A,low,high); if (pivot < A[low]) pivot = A[low]; else if (A[high] < pivot) pivot = A[high]; // A[low] is <= pivot // A[high] is >= pivot int i = low; int j = high; while (true) { do {i++} while (A[i] < pivot); do {j --} while (A[j] > pivot) ; if (i < j) swap(A,i,j); else break; } return i; }```	We can't run off the right end because A[high] is greater than or equal to the pivot (so i has to stop)   We can't run off the left end because A[low] is less than or equal to the pivot (so j has to stop)   In general: Anything that speeds up the partition loop speeds up the algorithm


Some Comments on Recursion	
Tail Recursion   - Occurs when the only recursive call appears just before the return   - Tail recursion can be easily converted to a loop   - Some compilers and interpreters do this automatically	- A common error when using recursion is to neglect to establish a base case   - Recursion and Induction are closely related   - An inductive proof is used to show a recursive algorithm is correct

## What About Equal Elements?

```
static int partition
 (int[] A, int low, int high) {
 int pivot = A[(low+high)/2];
 int i = low;
 int j = high;
 while (true) {
 while (i < high && A[i] < pivot)
 while (j > low && A[j] > pivot)
 j--;
 if (i < j) swap(A, i++, j --);
 else break;
 }
}
```

- Elements equal to the pivot element are placed on both sides
- We even swap equal elements
- Why?
- What happens if we sort an array with all equal elements?
- Why would we want to?

```
14
```


## Improvements to QuickSort

- Can rewrite using Comparable instead of int
- Allows sorting of any array containing objects that implement the Comparable interface
- But this QuickSort can't sort an int-array
- It pays to stop the recursion when low and high are "pretty close"
- If this is done, each element is near its final position
- It's faster to then sort the entire array in a postprocessing step using a simpler sorting method (InsertionSort)


## A Simple Inductive Proof

Theorem The sum of the first $n$ integers is $n(n+1) / 2$ Proof

Basis: The sum of the first 1 integer is $1(1+1) / 2$.
Induction Hypothesis: The sum of the first $k$ integers is $k(k+1) / 2$ for $k<n$.
The sum of the first n integers can be written as
$[1+\ldots+n-1]+n$.
By the IH for $\mathrm{k}=\mathrm{n}-1$, this is the same as
$[(n-1)(n) / 2]+n$
which is equal to $n(n+1) / 2$.

## An Invalid Inductive Proof

Theorem All cars are the same color. Proof

Basis: All cars in a set of size 1 are the same color
Induction Hypothesis: All cars in sets of size $\mathrm{k}<\mathrm{n}$ are the same color
Consider a set of $n$ cars. Take one car out; this leaves $n-1$ cars which, by the IH , are all the same color. Put that car back and take out another. Again, by the IH, all the remaining cars are the same color. Thus the first car I took out must be the same color as all the rest. By induction, all cars must be the same color.

```
Corollary All cars are blue.
```

Proof

I have a blue car and all cars are the same color, so all cars must be blue.

- What went wrong here?

19

