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Recursive Functions

■ A recursive function is a function that is defined in 
terms of itself

■ In practice:

● The result for “big” inputs is defined in terms of 
results for smaller inputs

● The results for the smallest inputs are defined 
independently — the Base Case(s)

■ Trivial example:

● n! = n times (n-1)!

● Base case: 0! = 1
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Simple Recursive Programs

■ Most programming 
languages allow recursion 
(Algol 60 was one of the 
first)

■ Note the base cases
● Without a base case, a 

recursive program runs 
forever

int factorial (int n) {
if (n == 0) return 1; // Base Case
return n*factorial(n-1);
}

int fibonacci (int n) {
if (n <= 1) return 1; // Base Case
return fibonacci(n-1)+fibonacci(n-2);
}
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Example: Squaring without Multiply

■ n2 = (n–1)2 + 2n – 1

int square (int n) {
if (n == 0) return 0;

return square(n-1) + n + n – 1;
}

■ All the examples so far are 
trivial

■ They can be done more 
efficiently by using a loop

■ Any recursive program can 
be converted to an iterative 
program that performs the 
same computation

■ But, many program are 
easier to write (and 
maintain) if they are written 
recursively
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Two Major Uses of Recursion

Divide & Conquer Algorithms

■ Divide & Conquer is an 
algorithm-design technique

● It uses recursion

■ The resulting algorithms 
are

● relatively easy to design 
and

● relatively easy to 
analyze

Recursive Descent Parsing

■ Parse: to divide language 
into small components that 
can be analyzed

■ In Computer Science
● Compilers must parse 

source code to be able 
to translate it into object 
code

● Any application that 
processes commands 
must be able to parse 
the commands
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QuickSort: Recursion on Arrays

QuickSort is based on Divide & Conquer

Intuitive idea:

■ Given an array A and a pivot value p

■ Partition A into two subarrays L and R
● L contains only elements less than or equal to p

● R contains only elements greater than p

■ Sort L and R separately Recursion!!!

■ Concatenate L and R to produce a sorted result
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QuickSort Example

20, 31, 24, 19, 45, 56,  4, 65,  5, 72, 14, 99

pivot partition

19 4
5
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65

72

99
20

4,  5, 14, 19 24, 31, 45, 56, 65, 72, 99

sort (recursively)sort (recursively)

20

4,  5, 14, 19, 20, 24, 31, 45, 56, 65, 72, 99

concatenate
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QuickSort Advantages

■ Fast (fastest known method for most sorting 
situations)

■ Sorting can be done in-place (no extra arrays 
needed)

● But how can we partition in-place?
● Simplified version: How do we efficiently get the 

blue balls all on the left?
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In-Place Partitioning

■ Keep two indices i and j

● Invariant: 
all balls to left of i are blue
all balls to right of j are red

● Move the two indices as long as invariant holds

can’t move the indices any farther
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Swapping to Maintain Invariant

can’t move the indices any fartherSwap

Swap
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Swap

Done When Indices Cross

■ Once indices cross, partitioning is done

■ For QuickSort
● blue = less than or equal to pivot

● red = greater than or equal to pivot
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What Should We Use for the Pivot?

■ Ideal: Choose the median
● Splits set exactly in half
● But way too hard to find

■ Poor strategies
● Choose leftmost 

element or choose 
rightmost element

● Either works well for 
arrays in random order

● But both work very
badly for sorted arrays

■ Effective strategies
● Choose middle element
● Choose a random 

element

● Choose median of 
leftmost, middle, and 
rightmost elements
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QuickSort Code

static int partition 

(int[ ] A, int low, int high) {
int pivot = A[(low+high)/2];
int i = low;
int j = high;
while (true) {

while (i < high && A[i] < pivot)
i++;

while (j > low && A[j] > pivot)
j – –;

if (i < j) swap(A, i++, j – –);
else break;
}

return i;
}

static void swap (int[ ] A, int i, int j) {

int temp = A[i];
A[i] = A[j];
A[j] = temp;
}

private static void quickSort 
(int[ ] A, int low, int high) {

if (low < high) {
int p = partition(A,low,high);
quickSort(A,low,p – 1);
quickSort(A,p,high);
}

}

public static void quickSort (int[ ] A)
{quickSort(A,0,A.length – 1);}
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What About Equal Elements?

static int partition 

(int[ ] A, int low, int high) {
int pivot = A[(low+high)/2];
int i = low;
int j = high;
while (true) {

while (i < high && A[i] < pivot)
i++;

while (j > low && A[j] > pivot)
j – –;

if (i < j) swap(A, i++, j – –);
else break;
}

return i;
}

■ Elements equal to the pivot 
element are placed on both 
sides

■ We even swap equal 
elements

● Why?
● What happens if we sort 

an array with all equal 
elements?

● Why would we want to?
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Using Sentinels to Improve Partition

static int partition 

(int[ ] A, int low, int high) {
int pivot = A[(low+high)/2];
if (A[low] > A[high]) swap(A,low,high);
if (pivot < A[low]) pivot = A[low];
else if (A[high] < pivot) pivot = A[high];
// A[low] is <= pivot
// A[high] is >= pivot

int i = low; int j = high;
while (true) {

do {i++} while (A[i] < pivot);
do {j – –} while (A[j] > pivot) ;
if (i < j) swap(A,i,j);
else break;
}

return i;
}

■ We can’t run off the right 
end because A[high] is 
greater than or equal to the 
pivot (so i has to stop)

■ We can’t run off the left end 
because A[low] is less than 
or equal to the pivot (so j 
has to stop)

■ In general: Anything that 
speeds up the partition 
loop speeds up the 
algorithm
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Improvements to QuickSort

■ Can rewrite using Comparable instead of int

● Allows sorting of any array containing objects 
that implement the Comparable interface

● But this QuickSort can’t sort an int-array 
■ It pays to stop the recursion when low and high are 

“pretty close”

● If this is done, each element is near its final 
position

● It’s faster to then sort the entire array in a 
postprocessing step using a simpler sorting 
method (InsertionSort)
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Some Comments on Recursion

■ Tail Recursion
● Occurs when the only

recursive call appears 
just before the return

● Tail recursion can be 
easily converted to a 
loop

● Some compilers and 
interpreters do this 
automatically

■ A common error when 
using recursion is to 
neglect to establish a base 
case

■ Recursion and Induction 
are closely related

● An inductive proof is 
used to show a 
recursive algorithm is 
correct
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A Simple Inductive Proof

Theorem The sum of the first n integers is n(n+1)/2
Proof

Basis: The sum of the first 1 integer is 1(1+1)/2.

Induction Hypothesis: The sum of the first k integers is 
k(k+1)/2 for k<n.

The sum of the first n integers can be written as 
[1+…+ n –1] + n.

By the IH for k=n–1, this is the same as 
[(n –1)(n)/2] + n 

which is equal to n(n+1)/2.
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An Invalid Inductive Proof

Theorem All cars are the same color.

Proof

Basis:  All cars in a set of size 1 are the same color

Induction Hypothesis: All cars in sets of size k<n are the same color

Consider a set of n cars.  Take one car out; this leaves n-1 cars which, by 
the IH, are all the same color.  Put that car back and take out another.  
Again, by the IH, all the remaining cars are the same color.  Thus the first 
car I took out must be the same color as all the rest.  By induction, all cars 
must be the same color.

Corollary All cars are blue.

Proof
I have a blue car and all cars are the same color, so all cars must be blue.

■ What went wrong here?


