
1

More Inheritance, Abstract Classes,
and Interfaces

CS211

Fall 2000

2

Recall: Overriding of Methods

class Animal {

protected String name = “”;
protected String noise = “”;

public setName (String myName) {
name = myName;
}

public void identifySelf () {

System.out.println(
“My name is “ + name);

}
public void perform () {

}
}

■ Method perform() in Dog
overrides perform() in
Animal

class Dog extends Animal {
public Dog () {

noise = “woof”;
}

public void perform () {

identifySelf();
System.out.println(“I am a Dog”);
System.out.println(noise);
}

}

3

Variable Shadowing

■ What happens if Dog also
has a field called name?

class Dog extends Animal {
protected String name = “xxx”;

public Dog () {
noise = “woof”;
}

public void perform () {
identifySelf();
System.out.println(“I am a Dog”);
System.out.println(noise);

}
}

■ The name field in Animal is
hidden or shadowed

■ Within Dog, super.name
can be used to access the
field in Animal

■ When a method is invoked,
the actual type of the
reference is used (i.e.,
dynamic binding)

■ When a variable is
accessed, the declared
type of the reference is
used (i.e., static binding)

■ Try to avoid shadowing

4

Constructors

■ Goal: Modify Animal so that
the animalType is specified
when the Animal is created

● Need a new constructor
in Animal

● Need a modified
identifySelf() in Animal

● What changes are
needed in Dog?

class Animal {

protected String name = “”;
protected String noise = “”;
private String animalType = “”;

public Animal (String animalType)
{this.animalType = animalType;}

public setName (String myName)

{name = myName;}

public void identifySelf {
System.out.println(“My name is “ + name);
System.out.println(“I am a “ + animalType);

}
public void perform ()

{ }
}

5

Old Dog vs. New Dog

class Dog extends Animal {

public Dog () {
noise = “woof”;
}

public void perform () {
identifySelf();
System.out.println(“I am a Dog”);
System.out.println(noise);

}
}

■ The old Dog constructor
starts by calling super()

■ This is now an error since
there is no such
constructor in Animal

class Dog extends Animal {

public Dog () {
super(“Dog”);
noise = “woof”;
}

public void perform () {
identifySelf();
System.out.println(noise);

}
}

■ The construction
“super(xxx)” calls the
constructor in Animal

6

Constructor Chaining

■ Within the same class
● Use the construction

this(xxx)
● Arguments are allowed

● Constructors can be
overloaded

■ Chaining to superclass
● Use the construction

super(xxx)
● Arguments are allowed

● Uses constructor in
superclass with
matching signature

■ Without an explicit
occurrence of this() or
super(), an occurrence of
super() (with no
arguments) is assumed

■ Implication: any use of
this() or super() must
occur in first statement of
constructor

■ Note: if no constructor is
specified then a no-
argument constructor is
assumed

2

7

Use of this and super in Java

this(xxx) Calls different constructor in current
class (must be 1st statement)

this.xxx Accesses a current-class variable

this.method(xxx) Calls a current-class method

super(xxx) Calls a superclass constructor
(must be 1st statement)

super.xxx Accesses a superclass variable
super.method(xxx) Calls a superclass method

super.super.xxx Invalid
8

Abstract Classes

■ How do we keep users
from defining generic
Animals?

● Make the class abstract

■ An abstract class is
“incomplete” and thus
cannot be instantiated

■ A method can also be
abstract (e.g., perform())

■ A class that inherits
(without overriding) or
contains an abstract
method is also abstract

abstract class Animal {

protected String name = “”;
protected String noise = “”;
private String animalType = “”;

public Animal (String animalType)
{this.animalType = animalType;}

public setName (String myName)

{name = myName;}

public void identifySelf {
System.out.println(“My name is “ + name);
System.out.println(“I am a “ + animalType);

}
abstract public void perform ();

}

9

final Methods, Classes, and Variables

■ What if we don’t want any
subclasses of Animal to
mess with identifySelf()?

● Make identifySelf() a
final method

■ A final method cannot be
overridden

■ A final class cannot be
extended (e.g., Integer,
String in Java)

■ A final variable cannot be
changed (i.e., it’s constant)

■ Why use final methods and
final classes?

● A method’s behavior may
be important to class
correctness

● Can lead to more efficient
code (i.e., can use static
binding instead of
dynamic binding)

final public void identifySelf {
System.out.println(“My name is “ + name);
System.out.println(“I am a “ + animalType);
}

10

Multiple Inheritance

■ Multiple inheritance allows
the creation of classes that
inherit from more than one
superclass

■ Not allowed in Java
■ But other object-oriented

languages allow it (e.g.,
C++, Lisp(CLOS))

■ Java allows only single
inheritance (or linear
inheritance)

● Simpler to implement
● More efficient

● Less confusing

Student Staff

TA

PolygonSimplex

Triangle

11

Interfaces

■ In Java, an interface is a
special kind of “class” that
has only abstract methods
(and constants)

● The method signatures
are known, but no
implementations are
given

■ In Java, a class extends a
superclass, but it
implements an interface

Example:
java.lang.Comparable

public interface Comparable {

public int compareTo (object o);
}

■ A class that implements
Comparable must provide
a method compareTo (with
matching signature)

12

A Kind of Multiple Inheritance

■ A class can extend just one
superclass

● Multiple inheritance can
cause conflicts

● Example: Which of 2
inherited methods to
use when both have
identical signatures?

■ But it can implement
multiple interfaces

● Multiple interfaces don’t
conflict because there
are no implementations

3

13

Interfaces Define New Types

■ An interface cannot be
instantiated (e.g.,
Comparable c = new Comparable();

is illegal)
■ But you can declare a

variable using the interface
type (e.g.,
Comparable c = new String(“hello”);

is legal because the class
String implements
Comparable)

interface Pet {

void perform ();
}

class Dog extends Animal
implements Pet {

public Dog () {
super(“Dog”);
noise = “woof”;}

public void perform () {
identifySelf();
System.out.println(noise);}

}
Dog d = new Dog();
System.out.println(d instanceof Pet); // true
Pet p = d; // OK

p.perform(); // OK
p.identifySelf(); // Compile-time errror

14

More on Interfaces

■ Interface methods

● Interface methods are implicitly public and
abstract

● No static methods are allowed in interfaces

■ Interface constants

● Interface constants are public, static, and final
● Can inherit multiple versions of constants

▲Compiler detects this
▲When this occurs, fully qualified names are

required

15

Why Interfaces and Abstract Classes?

Why have both?
■ Because an abstract class

can include method
implementations

● We used this in Animal
▲ identifySelf()

▲ constructor for Animal

● Useful in Shape class in
text

abstract class Animal {

protected String name = “”;
protected String noise = “”;
private String animalType = “”;

public Animal (String animalType)
{this.animalType = animalType;}

public setName (String myName)

{name = myName;}

public void identifySelf {
System.out.println(“My name is “ + name);
System.out.println(“I am a “ + animalType);

}
abstract public void perform ();

}

16

Aggregation

■ Two major mechanisms for
code reuse in Object
Oriented Programming

● Inheritance
● Aggregation

■ Aggregation is based on
the “has-a” relationship

● a Car has an Engine
● an Order has a

Customer
● a Customer has a

CreditRecord

■ The idea of aggregation is
to use objects as parts of
other objects

■ Example: The programmer
who writes the Order class
does not need to know
implementation details
about the Customer class
even though the Order
class uses a Customer field

