
1

Abstraction, Encapsulation,
and Inheritance

CS211

Fall 2000

2

Why Objects?

The use of objects encourages

■ Abstraction
● An abstraction denotes the essential properties

of an object
● One of the fundamental ways in which we

handle complexity

● Programming goal: choose the right abstractions

■ Encapsulation (information hiding)
● No direct access to the parts of an object

● No dependence on the object’s implementation

3

Multiple Abstractions

■ A single thing can have multiple abstractions

■ Example: a protein is…
● a sequence of amino acids

● a complicated 3D shape (a fold)

● a surface with “pockets” for ligands

4

Choosing Abstractions

■ Abstractions can be about
● tangible things (a

vehicle, a car, a map) or
● intangible things (a

meeting, a route, a
schedule)

■ An example:

■ What are the essential
properties of this “thing”?

● Abstraction name: light
● Light’s wattage (i.e.,

energy usage)
● Light can be on or off

■ There are other possible
properties (shape, color,
socket size, etc.), but we
have decided those are
less essential

■ The essential properties
are determined by the
problem

5

Modeling Abstraction using Classes

A class defines
■ all attributes/properties

and
■ all behaviors/operations

of an abstraction

■ In Java…
● Attributes/properties

correspond to fields
(or variables)

● Behaviors/operations
correspond to
methods

class light {
// Instance variables
private int wattage;
private boolean on;

// Instance methods

public void switchOn () { on = true; }
public void switchOff () { on = false; }
public boolean isOn () { return on; }
public int getWattage ()

{ return wattage; }
}

6

Encapsulation

■ Classes support a
particular kind of
abstraction, encouraging
separation between

● an object’s operations
and

● the implementations of
those operations

■ This allows and
encourages encapsulation

● Objects are regarded as
“black boxes” whose
internals are hidden

● Separation of contract
(i.e., what operations
are available) and
implementation

2

7

Contract vs. Implementation

■ A class can be viewed as a
contract; the contract
specifies

● what operations are
offered by the class

● In Java, this
corresponds to the
method headings for the
methods that are public

■ A class can be viewed as
an implementation; the
implementation specifies

● how the desired
behavior is produced

● In Java, this
corresponds to the
method-bodies and the
(nonpublic) instance
variables

8

Programming Implications

■ Encapsulation makes programming easier

● As long as the contract is the same, the client
doesn’t care about the implementation

● In Java, as long as the method signatures are
the same, the implementation details can be
changed

■ In other words, I can write my program using
simple implementations; then, if necessary, I can
replace some of the simple implementations with
efficient implementations

9

Recall Basics Ideas of OOP

■ Objects
● Allow and encourage

▲ Abstraction

▲ Encapsulation

■ Classes
● Templates for producing

multiple objects

■ Inheritance
● Allows and encourages

▲ Extensibility

▲ Code reuse

■ A distinction is sometimes
made between

● Object Based
Programming

▲ Objects

▲ Classes

● Object Oriented
Programming

▲ Objects

▲ Classes

▲ Inheritance

10

Inheritance

■ Inheritance = natural, hierarchical way of
organizing things

■ Based on the “is-a” relationship

Staff Member

Employee Volunteer

HourlySalaried

Consultant

Light

Artificial Light Natural Light

Light Bulb Tube Light

Neon Light Fluorescent Light

11

Another Inheritance Hierarchy

■ Higher in the hierarchy implies

● More generalized
■ Lower in the hierarchy implies

● More specialized

● with additional properties and behaviors

java.lang.Object

java.util.Hashtable

java.util.Vector

java.util.Stack

all user classesjava.util.Dictionary

12

Example: Animal Class

class Animal {

protected String name = “”;
protected String noise = “”;

public setName (String myName) {
name = myName;
}

public void identifySelf () {

System.out.println(
“My name is “ + name);

}
public void perform () {

}
}

■ An Animal has a name and
a noise, it can identify itself
and perform.

■ What happens?

Animal harpo = new Animal();
harpo.setName(“Harpo”);
harpo.perform();
// Output:

// Says nothing

3

13

A Dog is an Animal

class Dog extends Animal {
public Dog () {

noise = “woof”;
}

public void perform () {
identifySelf();

System.out.println(“I am a Dog”);
System.out.println(noise);
}

}

■ What Happens?

Dog snoopy = new Dog();
snoopy.setName(“Snoopy”);
snoopy.perform();
// Output:
// My name is Snoopy

// I am a Dog
// woof

■ Dog inherits name,
noise, setName() and
identifySelf() from
Animal

■ Method perform() is 14

A BigDog is a Dog

class BigDog extends Dog {
public BigDog () {

noise = “WOOF”;
}

}

■ What Happens?
BigDog fang = new BigDog();
fang.setName(“Fang”);
fang.perform();

// Output:
// My name is Fang
// I am a BigDog
// WOOF

■ BigDog inherits name,
noise, setName() and
identifySelf() from
Animal

■ BigDog inherits
perform() from Dog

15

A Human is an Animal

class Human extends Animal {
public Human () {

noise = “I think, therefore I am”;
}

public void perform () {
identifySelf();

System.out.println(
“I am a sentient being”);

System.out.println(noise);
}

}

■ What Happens?
Human descartes = new Human();
descartes.setName(“Rene”);
descartes.perform();

// Output:
// My name is Rene
// I am a sentient being
// I think, therefore I am

Animal

Dog

BigDog

Human

16

Inheritance and Scope in Java

For Variable (e.g., noise)
● Java first examines

current methods for local
variables or parameters

● Then examines variables
of current class

● Then examines variables
of superclass

● Continues up hierarchy
until no more
superclasses

For Methods (e.g., perform()
& identifySelf())

● Java first examines
methods of current class

● Then examines methods
of superclass

● Continues up hierarchy
until no more
superclasses

17

Illustrating Inheritance

class Example {

public static void Main (String[] args) {

String string = new String(“Java”);

System.out.println(string.getClass());
System.out.println(string.length());

Object obj = string; string = null;
// System.out.println(obj.length()); // error

System.out.println(obj.equals(“Java”));
System.out.println(obj.getClass());

string = (String) obj;
System.out.println(string.equals(“C++”);

}
}

java.lang.Object

equals()
getClass()

…

java.lang.String

equals()
length()

…

18

Illustrating Inheritance - Output

Output:

class Java.lang.String
4

true
class Java.lang.String

false

class Example {

public static void Main (String[] args) {

String string = new String(“Java”);

System.out.println(string.getClass());
System.out.println(string.length());

Object obj = string; string = null;
// System.out.println(obj.length()); // error

System.out.println(obj.equals(“Java”));
System.out.println(obj.getClass());

string = (String) obj;
System.out.println(string.equals(“C++”);

}
}

4

19

What Was Illustrated?

■ Inheriting from the
superclass

System.out.println(string.getClass());

■ Extending the superclass
(with the new method
length())

System.out.println(string.length());

■ Upcasting
Object obj = string;

● But can’t use methods
exclusive to subclass

System.out.println(obj.length()); // error

■ Method Overriding
System.out.println(obj.equals(“Java”));

■ Polymorphism and
Dynamic Method
Binding

System.out.println(obj.equals(“Java”));
System.out.println(obj.getClass());

■ Downcasting
string = (String) obj;

System.out.println(string.equals(“C++”);

20

Overriding vs. Overloading

■ Overriding
● New method has same

method signature and
same return type

● The syntax
super.method() can be
used to access the
method in the
superclass

● Occurs only in
subclasses

■ Overloading
● Requires different

method signature, same
method name

● Return type is not part
of the signature; cannot
overload by just
changing return type

● Can occur in subclasses
or in same class

21

Polymorphism & Dynamic Method Binding

■ Polymorphism
= the ability of a variable

to hold objects of its
own class and its
subclasses at runtime

Object obj = string;

■ Dynamic Method Binding
= the method invoked

depend on the actual
type of the reference

System.out.println(obj.equals(“Java”));
System.out.println(obj.getClass());

■ Note: the method called
depends on the declared
type of any arguments, not
the actual type

22

Downcasting

■ To cast a superclass
variable to a subclass,
explicit casting is required

string = (String) obj;

■ Downcasting can be invalid
at runtime

● A ClassCastException
can be thrown

● Use the operator
instanceof to determine
the runtime type of an
object

if (obj instanceof String) {

string = (String) obj;
System.out.println(string.length());
}

