Data Structures in The Real World: Databases & Expert Systems

- Databases are the lifeblood of E-Commerce & Medical Info Systems
 - **Examples:**
 - Given a key (credit card number) find the account record.
 - Given a patient ID, find the most recent X-rays.
 - **Problem:** Mismatch of disk access and main memory:
 - Main Memory access < 10 nanosec (10^{-8} sec)
 - Disk access < 10 millisec (10^{-2} sec)
 - **Solution:** Use data structures and algorithms to overcome mismatch:
 - B-Tree is a balanced multi-way search tree of order N: $\leq N$ children
 - Keys in left child are less than parent’s key, keys in right child are \geq
 - Within a node: keys are in sorted order \Rightarrow use binary search.

- Result: only 3 disk accesses to find any one of 100 million records:
 - 100 children per node; 4 level tree; $10^{+8} = 100$ million.
 - All leaves are at same level (3 below root); keep root in memory.
Banks Merge: combine common accounts

- Combine accounts from Bank-A and Bank-B for matching Social Security Numbers:
 - Create two Hash Table indices of SS# and account info for each bank, using common hash function.
 - Merge hash tables and combine entries - is database “Hash-Join”
 - Also could do with one hash table.
Expert Systems and Decision Making

- Decision Trees and Game Trees - actually graphs.

- *Node* for each *decision* (or game position).

- *Branch/*edge for each *choice* (or game move).
 - Weight on edge is "*cost*" of that choice.
 - Value in leaf is profit/*benefit* of reaching that goal (win/loose).

- *Path* from root to a leaf is the *plan* or *solution*.
 - *Optimize* the cost or likelihood of success.

- Overall graph is the ‘*decision space*’ or ‘*plan space*’.

- Another example:
 - Rule-based Expert Systems use a ‘Rete net’ *graph* to represent the interdependent rules, and to determine which rules can be executed when.