
1

Priority Queues and Heaps

CS211
Fall 2000

2

ADT Priority Queue

■ Operations:
● boolean isEmpty();
● void add (Object item);
● Object removeFirst ();

■ Other less-common
operations:

● update (an Item’s priority)
● join two PQs to make one

new PQ
● delete (an Item)

■ Uses
● Job scheduler for OS
● Can use to sort
● Retain the best k items
● Event-driven simulation
● Wide use within other

algorithms

3

Possible PQ Implementations

Can we do better than balanced trees?
Well no, not in terms of big-O bounds, but…

O(log n)
worst-case

O(log n)
expected

O(1)O(n)O(1)O(n)removeFirst()

O(log n)
worst-case

O(log n)
expected

O(n)O(1)O(n)O(1)add(item)

Balanced
BST

BST*Ordered
Array

Unordered
Array

Ordered
List

Unordered
List

* BST becomes unbalanced as PQ is used

4

Heaps

Definition: A min-heap is a
complete binary tree in
which the value at each
node is ≤ the value of its
children

Definition: For a max-heap,
each node is ≥ the value of
its children

Definition: Complete means
that each level of the tree is
filled except possibly the
last, which is filled from left
to right

5

45 12

1550 51

A Min-Heap

5

Add and RemoveFirst (for min-heap)

add (Item):
Place item in next empty

position;
while (item < parent) {

Swap item with parent;
}

removeFirst ():
min = root.value;
Swap root and last item in heap;
Decrease heap size by 1;
// The last item (call it v) is at root.
while (v > one of its children) {

Swap v with its smallest child;
}

return min;

6

Heap Implementation (the Big Trick)

■ Can avoid using pointers!

■ Store the heap in an array

■ For A[i]
left child = 2 ∗ i
right child = 2 ∗ i + 1
parent = i / 2

A[i]

A[2∗ i] A[2∗ i+1]

2

7

To Build a Heap

■ How long to construct a
heap, given the items?

■ Worst-case time for insert()
is O(log n)

■ Total time to build heap
using insert() is

O(log 1) + O(log 2) + ... + O(log n)

or O(n log n)

Can we do better?

■ We had two heap-fixing
methods
bubbleUp: move up the

tree as long as we’re
less than our parent

bubbleDown: move down
the tree as long as
we’re bigger than one of
our children

■ If we build the heap from
the bottom-up using
bubbleDown then we can
build it in time O(n) (Wow!)

8

Efficient Heap Building

■ Build from the bottom-up
■ If there are n items in the

heap then...
● There are about n/2

mini-heaps of height 1
● There are about n/4

mini-heaps of height 2
● There are about n/8

mini-heaps of height 3
and so on

■ The time to fix up a mini-
heap is O(its height)

■ Total time spent fixing
heaps is thus bounded by
n/2 + 2n/4 + 3n/8 +

■ This can be rewritten as
n(1/2 + 2/4 + ... + i/2i + ...)

= n(2)
■ Thus total heap-building

time (using the bottom-up
method) is O(n)

9

Other Heap Operations

delete
a particular item

update
an item (change its priority)

join
two priority queues

■ For delete and update, we
need to be able to find the
item

● One way to do this: Use
a HashMap to keep
track of the item’s
position in the heap

■ Efficient joining of 2 Priority
Queues requires another
data structure

● Skew Heaps or Pairing
Heaps (Chapter 22 in
text)

10

Another PQ Implementation

■ If there are only a few
possible priorities then can
use an array of lists

● Each array position
represents a priority
(0..m-1 where m is the
array size)

● Each list holds all items
that have that priority
(treated as a queue)

■ One text [Skiena] calls this
a bounded height priority
queue

■ Time for add: O(1)
■ Time for removeFirst:

● O(m) in the worst-case
● Generally, faster

m-1

0
1

11

PQ Application: Simulation

■ Example: Given a
probabilistic model of bank-
customer arrival times and
transaction times, how
many tellers are needed

● Assume we have a way
to generate random
inter-arrival times

● Assume we have a way
to generate transaction
times

● Can simulate the bank
to get some idea of how
long customers must
wait

Time-Driven Simulation
■ Check at each tick to see if

any event occurs

Event-Driven Simulation
■ Advance clock to next

event, skipping intervening
ticks

■ This uses a PQ!

