Moreon the
Java Collections Framework

java.util.SortedSet (an interface)

CS211
Fall 2000

= SortedSet extends Set

= For a SortedSet, the iterator() returns the elements in sorted
order

= Methods (in addition to those inherited from Set):
public Object first ();
Returns the first (lowest) object in this set
public Object last ();
Returns the last (highest) object in this set
public Comparator comparator ();

Returns the Comparator being used by this sorted set if
there is one; returns null if the natural order is being used

javalang.Comparable (an interface)

public int compareTo (Object x);
Returns a value (< 0), (= 0), or (> 0)
4 (< 0) implies this is before x
4 (= 0) implies this.equals(x) is true
4 (> 0) implies this is after x

= Many existing classes implement Comparable
« String, Double, Integer, Char, java.util.Date, ...

« If a class implements Comparable then that is
considered to be the class’s natural ordering

java.util.Comparator (an interface)

public int compare (Object x1, Object x2);
Returns a value (< 0), (= 0), or (> 0)
4 (< 0) implies x1 is before x2
4 (= 0) implies x1.equals(x2) is true
4 (> 0) implies x1 is after x2

= Can often use a Comparator when a class’s natural order is
not the one you want
« String. CASE_INSENSITIVE_ORDER is a predefined
Comparator
« java.util.Collections.reverseOrder() returns a Comparator
that reverses the natural order

SortedSet Implementations

= java.util. TreeSet

« This is the only class that implements SortedSet

« TreeSet's constructors
public TreeSet ();
public TreeSet (Collection c);
public TreeSet (Comparator comp);
public TreeSet (SortedSet set);
(uses the same sorting order as that used by set)

= Write a method that prints out a SortedSet of words

in order

= Write a method that prints out a Set of words in
order

javautil.List (an interface)

List extends Collection
Items in a list can be accessed via their index (position in list)
The add() method always puts an item at the end of the list
The iterator() returns the elements in list-order
Methods (in addition to those inherited from Collection)
public Object get (int index);
Returns the item at position index in the list
public Object set (int index, Object x);
Places x at position index, replacing previous item; returns the previous item
public void add (int index, Object x);
Places x at position index, shifting items to make room
public Object remove (int index);

Remove item at position index, shifting items to fill the space; returns the
removed item

public int indexOf (Object x);
Return the index of the first item in the list that equals x (x.equals())

List Implementations

= java.util.ArrayList (an array; expands via array-doubling)
« Constructors
public ArrayList ();
public ArrayList (int initialCapacity);
public ArrayList (Collection c);
= java.util.LinkedList (a doubly-linked list)
« Constructors
public LinkedList ();
public LinkedList (Collection c);
= Both include some additional useful methods specific to that
class
= Both are Cloneable

Efficiency Depends on Implementation

= Object x = list.get(k); = Write a Stack class
« O(1) time for ArrayList
« O(Kk) time for LinkedList = Write a Queue class

= list.remove(0); = Write a PriorityQueue class
. O(n) time for ArrayList that works on Comparable
objects

« O(1) time for LinkedList

= If (set.contains(x))...

« O(1) expected time for
HashSet

« O(log n) for TreeSet

Collection
size
isEmpty
contains
iterator
toArray
add
remove T
i ’—‘—‘
Set ————————————i List <],,J ArrayList
i ©
HashSet ot i
add i
SortedSet remove
<t indexOf LinkedList
comparator

]
!

first !

last TreeSet

java.util.Map (an interface)

= Map does not extend Collection
= A Map contains key/value pairs instead of individual elements
= Methods
public Object put (Object key, Object value);
Associates value with key in the map; returns the old value associated
with key or null if the key did not previously appear in the map
public Object get (Object key);
Returns the object to which this key is mapped or null if there is no
such key
public boolean containsKey (Object key);
True iff Map contains a pair using the given key
public boolean containsValue (Object value);
True iff there is at least on pair with this value
public Object remove (Object key);
Removes any mapping for the key; returns old value associated with
key if there was one (null otherwise)

More Map Methods

= Other methods
public int size ();
Return the number of key/value pairs in the Map
public boolean isEmpty ();
True iff Map holds no pairs
= Bulk methods

public void putAll (Map otherMap);
Puts all the mappings from otherMap into this map

public void clear ();
Removes all mappings
= Sets/Collections derived from a Map
public Set keySet ();
Returns a Set whose elements are the keys of this map
public Collection values ();
Returns a Collection whose elements are all the values of this map
public Set entrySet();

Returns a Set of Map.Entry objects (can use getKey() and getValue())

java.util.SortedMap (an interface)

= Extends the Map contract: requires that keys are sorted

= The iterators for keySet(), values(), and entrySet() all return items
in order of the keys

= Methods (in addition to those inherited from Map):

public Comparator comparator ();
Returns the comparator used to compare keys for this map; null
is returned if the natural order is being used

public Object firstKey ();
Returns the first (lowest value) key in this map

public Object lastKey ();
Returns the last (highest value) key in this map

Set and SortedSet |mplementations

= java.util.HashMap (a class; implements Map)
« Constructors
public HashMap ();
public HashMap (Map map);
public HashMap (int initialCapacity);
public HashMap (int initialCapacity, float loadFactor);
= java.util. TreeMap (a class; implements SortedMap)
« Constructors
public TreeMap ();
public TreeMap (Map map);
public TreeMap (Comparator comp);
public TreeMap (SortedMap map);

Efficiency & Some Comments

= Both TreeMap and
HashMap are meant to be
accessed via keys
« get, put, containsKay,
remove are all fast
1 O(1) expected time for
HashMap
4 O(log n) worst-case
time for TreeMap
« containsValue is slow
4 O(n) for both HashMap
and TreeMap

= Both HashSet and TreeSet
are actually implemented
by building a HashMap and
a TreeMap, respectively

= Given a Map that maps
student ID number to
student name, print out a
list of students sorted by ID
number and another list
sorted by name (assume
no duplicate names)

The java.util.Arrays Utility Class

= Provides useful static methods = Methods sort and binarySearch
for dealing with arrays can use the natural order or
. sort there is a version of each that

4 Mostly uses QuickSort can use a Comparator

1 Uses MergeSort for

Object[] (it's stable) = There is also a method for
« binarySearch viewing an array as a List:
« equals static List asList (Object[] a);
o fill « Note that the resulting List
» These methods are overloaded is backed by the array (i.e.,
to work with changes in the array are
reflected in the List and vice

« arrays of each primitive type

X versa)
« arrays of Objects

Unmodifiable Collections

= Dangerous version:

public final String suits[] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };

= The final modifier means that suits always refers to the same array, but

the array’s elements can be changed

« suits[0] = “Leisure”;

= Safe version:
private final String theSuits[] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };
public final List suits = Collections.unmodifiableList(Arrays.asList(theSuits));

= The Collections class provides unmodifiable wrappers; any methods that
would modify the collection throw an UnsupportedOperationException

« unmodifiableCollection, unmodifiableSet, unmodifiableSortedSet,
unmodifiableList

« unmodifiableMap, unmodifiableSortedMap

The java.util.Collections Utilities

public static Object min (Collection c);
public static Object min (Collection ¢, Comparator comp);
public static Object max (Collection c);
public static Object max (Collection ¢, Comparator comp);

public static Comparator reverseOrder (); // Reverse of natural order

public static void reverse (List list); Il Reverse the list
public static void shuffle (List list); /I Randomly shuffle the list
public static void fill (List list, Object x); Il List is filled with x's

public static void sort (List list); /I Sort using natural order
public static void sort (List list, Comparator comp);

public static void binarySearch (List list, Object key);

public static void binarySearch (List list, Object key, Comparator comp);

Arrays Collections
Map
asList min
put binarySearch max
get equals reverseOrder
containsKey fill reverse
containsValue sort shuffle
remove fill
size I sort
isEmpty binarySearch
putAll unmodifiableColl ection
clear unmodifiableSet
keySet unmodifiableSortedSet
values unmodifiableList
entrySet SortedM: unmodifiableMap
il R unmodifiableSortedMap
|

H
firstkey TreeMap
lastKey

