
1

More on  the
Java Collections Framework

CS211

Fall 2000

2

java.util.SortedSet (an interface)

■ SortedSet extends Set
■ For a SortedSet, the iterator( ) returns the elements in sorted 

order

■ Methods (in addition to those inherited from Set):
public Object first ( );

Returns the first (lowest) object in this set
public Object last ( );

Returns the last (highest) object in this set
public Comparator comparator ( );

Returns the Comparator being used by this sorted set if 
there is one; returns null if the natural order is being used

…

3

java.lang.Comparable (an interface)

public int compareTo (Object x);
Returns a value (< 0), (= 0), or (> 0)

▲(< 0) implies this is before x
▲(= 0) implies this.equals(x) is true
▲(> 0) implies this is after x

■ Many existing classes implement Comparable

● String, Double, Integer, Char, java.util.Date,…
● If a class implements Comparable then that is 

considered to be the class’s natural ordering

4

java.util.Comparator (an interface)

public int compare (Object x1, Object x2);
Returns a value (< 0), (= 0), or (> 0)

▲(< 0) implies x1 is before x2
▲(= 0) implies x1.equals(x2) is true
▲(> 0) implies x1 is after x2

■ Can often use a Comparator when a class’s natural order is 
not the one you want

● String.CASE_INSENSITIVE_ORDER is a predefined 
Comparator

● java.util.Collections.reverseOrder( ) returns a Comparator 
that reverses the natural order

5

SortedSet Implementations

■ java.util.TreeSet 

● This is the only class that implements SortedSet
● TreeSet’s constructors

public TreeSet ( );

public TreeSet (Collection c);

public TreeSet (Comparator comp);

public TreeSet (SortedSet set);

(uses the same sorting order as that used by set)

■ Write a method that prints out a SortedSet of words 
in order

■ Write a method that prints out a Set of words in 
order

6

java.util.List (an interface)

■ List extends Collection

■ Items in a list can be accessed via their index (position in list)

■ The add( ) method always puts an item at the end of the list

■ The iterator( ) returns the elements in list-order

■ Methods (in addition to those inherited from Collection)
public Object get (int index);

Returns the item at position index in the list
public Object set (int index, Object x);

Places x at position index, replacing previous item; returns the previous item
public void add (int index, Object x);

Places x at position index, shifting items to make room

public Object remove (int index);
Remove item at position index, shifting items to fill the space; returns the 
removed item

public int indexOf (Object x);
Return the index of the first item in the list that equals x (x.equals())

…



2

7

List Implementations

■ java.util.ArrayList (an array; expands via array-doubling)
● Constructors

public ArrayList ( );

public ArrayList (int initialCapacity);

public ArrayList (Collection c);

■ java.util.LinkedList (a doubly-linked list)

● Constructors
public LinkedList ( );

public LinkedList (Collection c);

■ Both include some additional useful methods specific to that 
class 

■ Both are Cloneable

8

Efficiency Depends on Implementation

■ Object x = list.get(k);
● O(1) time for ArrayList
● O(k) time for LinkedList

■ list.remove(0);
● O(n) time for ArrayList
● O(1) time for LinkedList

■ If (set.contains(x))…
● O(1) expected time for 

HashSet
● O(log n) for TreeSet

■ Write a Stack class

■ Write a Queue class

■ Write a PriorityQueue class 
that works on Comparable 
objects

9

Summary
Collection

size
isEmpty
contains
iterator
toArray

add
remove

Set

SortedSet

comparator
first
last
…

List

get
set
add

remove
indexOf

…

HashSet

TreeSet

ArrayList

LinkedList

10

java.util.Map (an interface)

■ Map does not extend Collection

■ A Map contains key/value pairs instead of individual elements

■ Methods

public Object put (Object key, Object value);
Associates value with key in the map; returns the old value associated 
with key or null if the key did not previously appear in the map

public Object get (Object key);
Returns the object to which this key is mapped or null if there is no 
such key

public boolean containsKey (Object key);
True iff Map contains a pair using the given key

public boolean containsValue (Object value);
True iff there is at least on pair with this value

public Object remove (Object key);
Removes any mapping for the key; returns old value associated with 
key if there was one (null otherwise)

11

More Map Methods
■ Other methods

public int size ( );
Return the number of key/value pairs in the Map

public boolean isEmpty ( );
True iff Map holds no pairs

■ Bulk methods

public void putAll (Map otherMap);
Puts all the mappings from otherMap into this map

public void clear ( );
Removes all mappings

■ Sets/Collections derived from a Map

public Set keySet ( );
Returns a Set whose elements are the keys of this map

public Collection values ( );
Returns a Collection whose elements are all the values of this map

public Set entrySet( );
Returns a Set of Map.Entry objects (can use getKey() and getValue())

12

java.util.SortedMap (an interface)

■ Extends the Map contract: requires that keys are sorted

■ The iterators for keySet( ), values( ), and entrySet( ) all return items 
in order of the keys

■ Methods (in addition to those inherited from Map):

public Comparator comparator ( );
Returns the comparator used to compare keys for this map; null 
is returned if the natural order is being used

public Object firstKey ( );
Returns the first (lowest value) key in this map

public Object lastKey ( );

Returns the last (highest value) key in this map

…



3

13

Set and SortedSet Implementations

■ java.util.HashMap (a class; implements Map)
● Constructors

public HashMap ( );

public HashMap (Map map);

public HashMap (int initialCapacity);

public HashMap (int initialCapacity, float loadFactor);

■ java.util.TreeMap (a class; implements SortedMap)

● Constructors
public TreeMap ( );

public TreeMap (Map map);

public TreeMap (Comparator comp);

public TreeMap (SortedMap map);

14

Efficiency & Some Comments

■ Both TreeMap and 
HashMap are meant to be 
accessed via keys

● get, put, containsKay, 
remove are all fast

▲ O(1) expected time for 
HashMap

▲ O(log n) worst-case 
time for TreeMap

● containsValue is slow
▲ O(n) for both HashMap 

and TreeMap

■ Both HashSet and TreeSet 
are actually implemented 
by building a HashMap and 
a TreeMap, respectively

■ Given a Map that maps 
student ID number to 
student name, print out a 
list of students sorted by ID 
number and another list 
sorted by name (assume 
no duplicate names)

15

The java.util.Arrays Utility Class

■ Provides useful static methods 
for dealing with arrays

● sort
▲ Mostly uses QuickSort

▲ Uses MergeSort for 
Object[ ] (it’s stable)

● binarySearch

● equals

● fill

■ These methods are overloaded 
to work with

● arrays of each primitive type

● arrays of Objects

■ Methods sort and binarySearch 
can use the natural order or 
there is a version of each that 
can use a Comparator

■ There is also a method for 
viewing an array as a List:

static List asList (Object[ ] a);

● Note that the resulting List 
is backed by the array (i.e., 
changes in the array are 
reflected in the List and vice 
versa)

16

Unmodifiable Collections
■ Dangerous version:

public final String suits[ ] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };

■ The final modifier means that suits always refers to the same array, but 
the array’s elements can be changed

● suits[0] = “Leisure”;

■ Safe version:

private final String theSuits[ ] = { “Clubs”, “Diamonds”, “Hearts”, “Spades” };

public final List suits = Collections.unmodifiableList(Arrays.asList(theSuits));

■ The Collections class provides unmodifiable wrappers; any methods that 
would modify the collection throw an UnsupportedOperationException

● unmodifiableCollection, unmodifiableSet, unmodifiableSortedSet,
unmodifiableList

● unmodifiableMap, unmodifiableSortedMap

17

The java.util.Collections Utilities
public static Object min (Collection c);

public static Object min (Collection c, Comparator comp); 

public static Object max (Collection c);

public static Object max (Collection c, Comparator comp);

public static Comparator reverseOrder ( ); // Reverse of natural order

public static void reverse (List list); // Reverse the list

public static void shuffle (List list); // Randomly shuffle the list

public static void fill (List list, Object x); // List is filled with x’s

public static void sort (List list); // Sort using natural order

public static void sort (List list, Comparator comp);

public static void binarySearch (List list, Object key);

public static void binarySearch (List list, Object key, Comparator comp);

… 

18

Summary

Map

put
get

containsKey
containsValue

remove
size

isEmpty
putAll
clear

keySet
values

entrySet SortedMap

comparator
firstKey
lastKey

HashMap

TreeMap

Arrays

asList
binarySearch

equals
fill
sort

Collections

min
max

reverseOrder
reverse
shuffle

fill
sort

binarySearch
unmodifiableCollection

unmodifiableSet
unmodifiableSortedSet

unmodifiableList
unmodifiableMap

unmodifiableSortedMap
…


