
1

Data Structure Building Blocks

CS211

Fall 2000

2

Data Structure Building Blocks

■ These are implementation “building blocks” that are
often used to build more-complicated data
structures

● Arrays

● Linked Lists
▲Singly linked
▲Doubly linked

● Binary Trees

● Graphs
▲Adjacency matrix
▲Adjacency list

3

Arrays

■ Declaration/Initialization
String[] s = new String[3];
s[0] = “jan”; s[1] = “feb”; s[2] = “mar”;

or
String[] s;

s = new String[] {“jan”,”feb”,”mar”};

■ Iteration
for (int i = 0; i < s.length; i++) {

// Do something using s[i]
}

■ Advantages
● Fast access to each

element
▲ O(1) time

● Space efficient

■ Disadvantages
● Hard to insert an

element in the middle
● Size must be known

when created

4

Singly-Linked List

■ Declaration
static class Node {

Object data;
Node next;

Node (Object d, Node n)
{data = d; next = n;}

}

■ Initialization
Node head = new Node(“jan”,null);
head.next = new Node(“feb”,null);
head.next.next = new Node(“mar”,null);

■ Iteration
Node node = head;
while (node != null) { // Use node
somehow

node = node.next;
}

■ Advantages
● Grows as needed
● Efficient insertion

■ Disadvantages
● Element access can be

expensive
▲ generally, O(n)

● Uses extra space for
pointers

● Can go forward, but not
backward

5

Doubly-Linked List

■ Declaration
static class Node {

Object data;
Node next, prev;

Node (Node p, Object d, Node n)
{prev = p; data = d; next = n;}

}

■ Initialization
Node head = new Node(null,“jan”,null);
head.next = new Node(head,“feb”,null);
head.next.next = new

Node(head.next,“mar”,null);

■ Iteration
● Same as singly-linked

list

■ Advantages
● Grows as needed
● Efficient insertion
● Can move both forward

and backward

■ Disadvantages
● Element access can be

expensive
● Uses even more extra

space for pointers

6

What do we mean by “List”?

■ Intuitive idea of a list
● Used when speaking

informally
● Examples: grocery list,

cs211 class list, list of
possible running mates

■ Implementations of a list
● Used when speaking of

algorithms

● Examples: array, singly-
linked list, doubly linked-
list

■ ADT List
● Includes operations that

(should) correspond to
our intuitive idea of a list

● There is only partial
agreement on what
those operations should
be

● Java includes a List
interface (java.util.List)
as part of the Java
Collections Framework

2

7

Terminology for (Rooted) Trees

■ Each tree has a distinguished
root; there is a unique path from
the root to each node (i.e., no
loops)

■ Each node, except the root, has
one parent

■ A node can have multiple
children

■ A node with no children is called
a leaf

■ The height of a tree is the length
of its longest root-to-leaf path

■ Ancestor and descendent are
based on analogy to family trees

A

B E

HG

C

F

D

JI

K

8

Binary Trees

■ Declaration
class Node {

Object data;
Node lchild,rchild;

Node (Node lc, Object d, Node rc)
{data = d; lchild = lc; rchild = rc;}

}

■ Initialization
Node root = new Node(null,”jan”,null);
root.lchild = new Node(null,”feb”,null);

root.rchild = new Node(null,”mar”,null);

■ Iteration (next slide)

■ Advantages
● Grows as needed
● Efficient access to

elements
▲ generally, O(log n)

▲ requires balanced tree

● Efficient insertion

■ Disadvantages
● Uses extra space for

pointers

9

Binary Tree Iteration: Tree Traversals

■ Preorder Traversal
static void preorder (Node node) {

if (node == null) return;
// Process node

preorder(node.lchild);
preorder(node.rchild);
}

■ Inorder Traversal
static void inorder (Node node) {

if (node == null) return;

inorder(node.lchild);
// Process node
inorder(node.rchild);
}

■ Postorder Traversal
static void postorder (Node node) {

if (node == null) return;
postorder(node.lchild);

postorder(node.rchild);
// Process node
}

■ Level-Order Traversal
static void levelOrder (Node root) {

Queue q = new Queue(); q.put(root);
while (!q.isEmpty()) {

Node node = (Node) q.get();
// Process node
if (node.lchild != null) q.put(node.lchild);
if (node.rchild != null) q.put(node.rchild);
} }

10

Graph Terminology

■ A graph G is a pair (V,E) where V is a set
of vertices and E is a set of edges

■ Each edge is a pair (u,v) of vertices
■ In a directed graph (or digraph), edge

pairs are ordered (i.e., (u,v) is considered
to be a different edge than (v,u))

■ In an undirected graph, the edge pairs are
unordered

■ A path is a sequence of vertices v0,…,vn
such that (vi,vi+1) is an edge for each i

■ A cycle is a path (of length at least one)
for which v0 = vn

■ A weighted graph has a cost for each
edge

A
C

E

F

B

D

B

E

A

F

D

C

11

Implementing Digraphs

■ Adjacency Matrix
g[u][v] is true iff there is an
edge from u to v

■ Adjacency List
The list for u contains v iff
there is an edge from u to v

0

3

2 1

3

T2

T1

TT0

3210

3

2

1

0 1 3

2

0

12

Implementing Weighted Digraphs

■ Adjacency Matrix
g[u][v] is c iff there is an edge
of cost c from u to v

■ Adjacency List
The list for u contains v,c iff
there is an edge from u to v
that has cost c

0

3

2 1

3

82

201

11150

3210

3

2

1

0

15
8

11

20

1 15

0 8

2 20

3 11

3

13

Implementing Undirected Graphs

■ Adjacency Matrix
g[u][v] is true iff there is an
edge from u to v

■ Adjacency List
The list for u contains v iff
there is an edge from u to v

0

3

2 1

T3

TT2

TT1

TTT0

3210

3

2

1

0 1 2

2

0

3

0

1

0

14

Adjacency Matrix or Adjacency List?

v = number of vertices
e = number of edges
eu = number of edges leaving u

■ Adjacency Matrix
● Uses space O(v2)
● Can iterate over all edges

in time O(v2)
● Can answer “Is there an

edge from u to v?” in O(1)
time

● Better for dense (i.e., lots
of edges) graphs

■ Adjacency List
● Uses space O(e+v)
● Can iterate over all

edges in time O(e+v)
● Can answer “Is there an

edge from u to v?” in
O(eu) time

● Better for sparse (i.e.,
fewer edges) graphs

