Data Structure Building Blocks	
	CS211
	Fall 2000

Data Structure Building Blocks

These are implementation "building blocks" that are often used to build more-complicated data structures

- Arrays
- Linked Lists
- Singly linked
- Doubly linked
- Binary Trees
- Graphs
\triangle Adjacency matrix
\triangle Adjacency list

Arrays	
Declaration/Initialization String[] s = new String[3]; $s[0]=$ "jan"; s[1] = "feb"; s[2] = "mar"; or String[] s; $\mathrm{s}=$ new String[] \{"jan","feb","mar"\}; Iteration for (int $\mathrm{i}=0 ; \mathrm{i}<$ s.length; $\mathrm{i}+\mathrm{+}$) $\{$ // Do something using s[i] \}	Advantages - Fast access to each element $\Delta \mathrm{O}(1)$ time - Space efficient Disadvantages - Hard to insert an element in the middle - Size must be known when created

Singly-Linked List	
Declaration static class Node \{ Object data; Node next; Node (Object d, Node n) $\{d a t a=d ; n e x t=n ;\}$	Advantages - Grows as needed - Efficient insertion Disadvantages - Element access can be expensive Δ generally, O(n) - Uses extra space for pointers - Can go forward, but not backward

What do we mean by	' $\mathrm{List}^{\prime \prime}$?

Terminology for (Rooted) Trees

- Each tree has a distinguished root, there is a unique path from the root to each node (i.e., no loops)
- Each node, except the root, has one parent

A node can have multiple children

- A node with no children is called a leaf
- The height of a tree is the length of its longest root-to-leaf path
- Ancestor and descendent are based on analogy to family trees

Binary Trees	
Declaration class Node \{ Object data; Node Ichild,rchild; Node (Node Ic, Object d, Node rc) \{data = d; lchild = lc; rchild = rc; \} \} Initialization Node root = new Node(null," "jan",null); root.lchild = new Node(null,"feb",null); root.rchild = new Node(null,"mar",null); Iteration (next slide)	Advantages - Grows as needed - Efficient access to elements Δ generally, O(logn) requires balanced tree - Efficient insertion Disadvantages - Uses extra space for pointers
8	

Binary Tree Iteration: Tree Traversals

■ Preorder Traversal static void preorder (Node node) \{	- Postorder Traversal static void postorder (Node node) \{
if (node == null) return;	if (node == null) return;
// Process node	postorder(node.lchild);
preorder(node.Ichild);	postorder(node.rchild);
preorder(node.rchild);	// Process node
\}	\}
	- Level-Order Traversal
- Inorder Traversal	static void levelOrder (Node root) \{
static void inorder (Node node) \{	Queue $\mathrm{q}=$ new Queue(); q.put(root);
if (node $==$ null) return;	while (!q.isEmpty()) \{
inorder(node.lchild);	Node node $=($ Node) q.get() ;
// Process node	// Process node
inorder(node.rchild);	if (node.lchild != null) q.put(node.lchild);
\}	if (node.rchild != null) q.put(node.rchild);
	\} \}

Implementing Weighted Digraphs

- Adjacency Matrix $\mathrm{g}[\mathrm{u}][\mathrm{v}]$ is c iff there is an edge of cost c from u to v

0	1	2	3
	15		11

- Adjacency List The list for u contains v, c iff there is an edge from u to v that has cost c

Adjacency Matrix or Adjacency List?
$v=$ number of vertices
$\mathrm{e}=$ number of edges
$e_{u}=$ number of edges leaving u

- Adjacency Matrix
- Uses space $O\left(v^{2}\right)$
- Can iterate over all edges in time $\mathrm{O}\left(\mathrm{v}^{2}\right)$
- Can answer "Is there an edge from u to v ?" in $\mathrm{O}(1)$ time
- Better for dense (i.e., lots of edges) graphs
- Adjacency List
- Uses space $\mathrm{O}(\mathrm{e}+\mathrm{v})$
- Can iterate over all edges in time $\mathrm{O}(\mathrm{e}+\mathrm{v})$
- Can answer "Is there an edge from u to v ?" in $\mathrm{O}\left(\mathrm{e}_{\mathrm{u}}\right)$ time
- Better for sparse (i.e., fewer edges) graphs

