
1

Basic Data Structures

CS211

Fall 2000

2

Limitations of Runtime Analysis

■ Big-O can hide a large 
constant

● Example: Selection
● Example: small 

problems

■ The problem you want to 
solve may not be the worst 
case

● Example: Simplex 
method for linear 
programming

■ Your program may not be 
run often enough to make 
analysis worthwhile

● Example: one-shot vs. 
every day

■ You may be analyzing and 
improving the wrong part of 
the program

● Common situation

● Should use profiling
tools

3

Why Bother with Runtime Analysis?

■ Computers are so fast 
these days that we can do 
whatever we want using 
just simple algorithms and 
data structures, can’t we?

■ Well…not really; data-
structure/algorithm 
improvements can be a 
very big win

■ Scenario:
● A runs in n2 msec
● A’ runs in n2/10 msec
● B runs in 10 n log n 

msec

■ Problem of size n=103

● A: 103 sec ≈ 17 minutes
● A’: 102 sec ≈ 1.7 minutes
● B: 102 sec ≈ 1.7 minutes

■ Problem of size n=106

● A: 109 sec ≈ 30 years
● A’: 108 sec ≈ 3 years
● B: 2 x 105 sec ≈ 2 days

1 day = 86,400 sec ≈ 105 sec

1,000 days ≈ 3 years

4

Strategies for Programming Problems

Goal: Make it easier to 
solve programming 
problems

■ Basic Data Structures

● I recognize this; I can 
use this well-known 
data structure

● Examples: Stack, 
Queue, Priority 
Queue, Hashtable, 
Binary Search Tree

■ Algorithm Design Methods

● I can design an algorithm to 
solve this

● Examples: Divide & Conquer, 
Greedy, Dynamic Programming

■ Problem Reductions

● I can change this problem into 
another with a known solution

● Or, I can show that a 
reasonable algorithm is most-
likely impossible

● Examples: reduction to network 
flow, NP-complete problems

5

Recall: Use of Objects Encourages…

■ Abstraction
● Avoid details
● Distill down to 

fundamental parts

■ Encapsulation
● Information hiding
● Our code depends on 

the available operations, 
but not on how they are 
implemented

Why use these ideas?
● Basically, because they 

seem to help

● Result in clean 
interfaces, easier 
modification, portable 
code

6

Abstract Data Types (ADTs)

■ A method for achieving 
abstraction for data 
structures and algorithms

■ ADT = model + operations

■ Describes what each 
operation does, but not 
how it does it

■ An ADT is independent of 
its implementation

■ In Java, an interface
corresponds well to an ADT

● The interface describes 
the operations, but says 
nothing at all about how 
they are implemented

■ Example: Stack interface/ADT
public interface Stack {

public void push (Object x);
public Object pop ( );

public Object peek ( );
public boolean isEmpty ( );
public void makeEmpty ( );
}



2

7

Array Implementation of Stack

class StackArray implements Stack {

Object [ ] s; // Holds the stack
int top; // Index of stack top
public StackArray(int max) // Constructor

{s = new Object [max]; top = -1;}
public void push (Object item) {s [++top] = item;}
public Object pop ( ) {return s [top – –];}
public Object peek ( ) {return s [top];}

public boolean isEmpty( ) {return top == -1;}
public void makeEmpty( ) {top = -1;}
}

// Better for garbage collection if makeEmpty( ) also cleared the array

max-1

3

2

1

0

3

top

O(1) worst-
case time for 

each 
operation

8

Linked List Implementation of Stack

class StackLinked implements Stack {

class Node {Object data; Node next; // An inner class
Node (Object d, Node n) // Constructor for Node

{data = d; next = n;}
}

Node top; // Top Node of stack
public StackLinked ( ) {top = null;} // Constructor
public void push (Object item) {top = new Node(item,top);}

public Object pop ( ) {
Object temp = top.data; top = top.next; return temp;}

public boolean isEmpty ( ) {return top == null;}
public void makeEmpty ( ) {top = null;}

}
top

O(1) worst-
case time for 

each 
operation

Note that the array 
implementation 

can overflow, but 
the linked list 
version can’t

9

ADT Queue

Operations:
void enQueue (Object x);
Object deQueue ( );
Object peek ( )

boolean isEmpty ( );
void makeEmpty ( );

▲ Text uses getFront( ) 
instead of peek( )

Possible implementations
Linked List

head last

Array with wraparound
(can overflow)

head last

Array  with head always at A[0]
(deQueue( ) becomes expensive) 

(can overflow)

last

10

ADT Dictionary

Operations:

void insert (Object key,Object value);
void update (Object key, Object value);
Object find (Object key);

void remove (Object key);
void makeEmpty ( );

Think of 

key = word; value = definition

■ Uses:
● Symbol tables
● Wide use within other 

algorithms

Array implementations

■ Update( ) and find ( ) use Binary 
Search

■ Can use Binary Search for 
remove( ), but then find( ) doesn’t 
work

■ Can use special “removed” mark 
to make find( ) work again

O(1) or O(n)O(1) or O(n)makeEmpty

O(n)O(n)remove

O(n)O(log n)find

O(n)O(log n)update

O(1)O(n)insert

unsortedsorted

11

Multiple Dictionary Implementations

O(log n)

O(log n)

O(1)

remove

worst-
case

O(log n)O(log n)O(log n)Balanced 
Tree

expected
(sort of)

O(log n)O(log n)O(log n)Binary 
Search 

Tree 
(BST)

expectedO(1)O(1)O(1)Hashtable

findupdateinsert

12

ADT Priority Queue

Operations:
void insert (Object x);
Object getMax ( );
boolean isEmpty ( );

Uses:
● Job scheduler
● Event-driven simulation
● Wide use within other 

algorithms O(log n)O(log n)Heap

O(1)O(n)Sorted 
Array

O(n)O(1)Unsorted 
Array

O(n)O(1)Linked 
List

getMaxinsert


