Algorithm Analysis	
	CS211

What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
- Faster?
- Less space?
- Easier to code?
- Easier to maintain?
- Required for homework?
- How do we measure the first two?

2

Sample Problem: Searching	
- Determine if a sorted array of integers contains a given integer 1st solution: Linear Search (check each element) static boolean find (int[] a, int item) \{ for (int $i=0 ; i<a . l e n g t h ; i++$) \{ if (a[i] $==$ item) return true; \} return false; \}	2nd solution: Binary Search ```static boolean find (int[] a, int item) { int low = 0; int high = a.length - 1; while (low <= high) { int mid = (low+high)/2; if (a[mid] < item) low = mid+1; else if (item < a[mid]) high = mid - 1; else return true; } return false; }```

Linear Search vs. Binary Search

■ Which one is better?

- Linear Search is easier to program
- But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
- Experiment?
- Proof?
- But which inputs do we use?

4

One Basic Step = One Time Unit

- Basic step:
- input or output of a scalar value
- accessing the value of a scalar variable, array element, or field of an object
- assignment to a variable, array element, or field of an object
- a single arithmetic or logical operation
- method invocation (not counting argument evaluation and execution of the method body)
- For a conditional, we count number of basic steps on the branch that is executed
- For a loop, we count number of basic steps in loop body times the number of iterations
- For a method, we count number of basic steps in method body (including steps needed to prepare stack-frame)

Using Big-O to Hide Constants	
- Roughly, $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n})$) means that $f(n)$ grows like $\mathrm{g}(\mathrm{n})$ or slower	Claim: $\mathrm{n}^{2}+\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right)$ We know $\mathrm{n} \leq \mathrm{n}^{2}$ for $\mathrm{n} \geq 1$
Definition: $\mathrm{O}(\mathrm{g}(\mathrm{n})$) is a set, $f(n)$ is a member of this set if and only if there exist constants c and N such that $0 \leq f(n) \leq c g(n)$, for all $n \geq N$	So $n^{2}+n \leq 2 n^{2}$ for $n \geq 1$ So by definition, $\begin{aligned} & \mathrm{n}^{2}+\mathrm{n}=\mathrm{O}\left(\mathrm{n}^{2}\right) \\ & \quad \text { for } \mathrm{c}=2 \text { and } \mathrm{N}=1 \end{aligned}$
We should write $\mathrm{f}(\mathrm{n}) \in \mathrm{O}(\mathrm{g}(\mathrm{n}))$ - But by convention, we write $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$	

Problem-Size Examples			
■ Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?			
Complexity	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
$n \log \mathrm{n}$	140	4893	200,000
n^{2}	31	244	1897
$3 n^{2}$	18	144	1096
n^{3}	10	39	153
$2^{\text {n }}$	9	15	21

| Commonly Seen Time Bounds |
| :---: | :---: | :---: |
| |
| $\mathrm{O}(1)$ constant excellent
 $\mathrm{O}(\log \mathrm{n})$ logarithmic excellent
 $\mathrm{O}(\mathrm{n})$ linear good
 $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ quadratic good
 $\mathrm{O}\left(\mathrm{n}^{2}\right)$ cubic maybe OK
 $\mathrm{O}\left(\mathrm{n}^{3}\right)$ exponential too slow
 $\mathrm{O}\left(2^{n}\right)$
 11 |

Related Notations	
Big-Omega	Big-Theta
Definition: $f(n)$ is a member of the set $\Omega(g(n))$ if and only if there exists constants c and N such that $0 \leq \mathrm{c} g(n) \leq f(n)$, for all $n \geq N$	Definition: $f(n)$ is a member of the set $\Theta(g(n))$ if and only if $f(n)=O(g(n))$ and $f(n)=\Omega(g(n))$

Worst-Case/Expected-Case Bounds	
We can't determine time bounds for all possible inputs of size n Simplifying assumption \#4: Determine number of steps for either - worst-case or - expected-case	Worst-case - Determine how much time is needed for the worst possible input of size n Expected-case - Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

1. Use the size of the input rather than the input itself
2. Count the number of "basic steps" rather than computing exact times
3. Multiplicative constants aren't important
4. Determine number of steps for either

- worst-case or
- expected-case

Analysis of Matrix Multiplication	
Code for multiplying n-by-n matrices A and B : ```for (\(\mathrm{i}=0\); \(\mathrm{i}<\mathrm{n} ; \mathrm{i}++\)) for (\(\mathrm{j}=0 ; \mathrm{j}<\mathrm{n}\); j++) for (\(k=0 ; k<n ; k++\)) \(C[i][j]=C[i][j]+A[i][k] * B[k][j] ;\)```	By convention, matrix problems are measured in terms of n, the number of rows and columns - Note that the input size is $2 n^{2}$ - Worst-case time is $\mathrm{O}\left(\mathrm{n}^{3}\right)$ - Expected-case time is also $\mathrm{O}\left(\mathrm{n}^{3}\right)$

