
1

Algorithm Analysis

CS211
Fall 2000

2

What Makes a Good Algorithm?

■ Suppose you have two possible algorithms or data
structures that basically do the same thing; which is
better?
● Faster?
● Less space?
● Easier to code?
● Easier to maintain?
● Required for homework?

■ How do we measure the first two?

3

Sample Problem: Searching

■ Determine if a sorted array
of integers contains a given
integer

■ 1st solution: Linear Search
(check each element)

static boolean find (int[] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}

return false;
}

■ 2nd solution: Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {

int mid = (low+high)/2;
if (a[mid] < item)

low = mid+1;
else if (item < a[mid])

high = mid - 1;
else return true;
}

return false;
}

4

Linear Search vs. Binary Search

■ Which one is better?
● Linear Search is easier

to program
● But Binary Search is

faster… isn’t it?

■ How do we measure to
show that one is faster than
the other

● Experiment?
● Proof?
● But which inputs do we

use?

■ Simplifying assumption #1:
Use the size of the input
rather than the input itself

● For our sample search
problem, the input size
is n where n-1 is the
array size

■ Simplifying assumption #2:
Count the number of “basic
steps” rather than
computing exact times

5

One Basic Step = One Time Unit

■ Basic step:
● input or output of a scalar

value
● accessing the value of a

scalar variable, array
element, or field of an object

● assignment to a variable,
array element, or field of an
object

● a single arithmetic or logical
operation

● method invocation (not
counting argument evaluation
and execution of the method
body)

■ For a conditional, we count
number of basic steps on
the branch that is executed

■ For a loop, we count
number of basic steps in
loop body times the
number of iterations

■ For a method, we count
number of basic steps in
method body (including
steps needed to prepare
stack-frame)

6

Runtime vs. Number of Basic Steps

■ But isn’t this cheating?
● The runtime is not the

same as the number of
basic steps

● Time per basic step
varies depending on
computer, on compiler,
on details of code…

■ Well… yes, it is cheating in
a way

● But the number of basic
steps is proportional to
the actual runtime

■ Which is better?
● n or n2 time?
● 100 n or n2 time?
● 10,000 n or n2 time?

■ As n gets large,
multiplicative constants
become less important

■ Simplifying assumption #3:
Multiplicative constants
aren’t important

2

7

Using Big-O to Hide Constants

■ Roughly, f(n) = O(g(n))
means that f(n) grows like
g(n) or slower

Definition: O(g(n)) is a set;
f(n) is a member of this set
if and only if there exist
constants c and N such that
0 ≤ f(n) ≤ c g(n), for all n≥N

■ We should write
f(n) ∈ O(g(n))

■ But by convention, we write
f(n) = O(g(n))

Claim: n2 + n = O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2 n2 for n ≥1

So by definition,
n2 + n = O(n2)

for c=2 and N=1

8

Big-O Examples

Claim: 100 n + log n = O(n)

We know log n ≤ n for n ≥ 1

So 100 n + log n ≤ 101 n
for n ≥ 1

So by definition,
100 n + log n = O(n)

for c=101 and N=1

Claim: logB n = O(log n)

Let k = log n

Then n = 2k and (the
subscripts are too messy;
switch to board)

Question: Which grows
faster: sqrt(n) or log n?

9

Simple Big-O Examples

■ Let f(n) = 3n2 + 6n – 7
● Claim f(n) = O(n2)
● Claim f(n) = O(n3)
● Claim f(n) = O(n4)
● …

■ g(n) = 4n log n + 34 n – 89
● Claim g(n) = O(n log n)
● Claim g(n) = O(n2)

■ h(n) = 20 * 2n + 40
● Claim h(n) = O(2n)

■ a(n) = 34
● Claim a(n) = O(1)

■ Only the leading term (the
term that grows most
rapidly) matters

10

Problem-Size Examples

■ Suppose we have a computing device that can
execute 1000 operations per second; how large a
problem can we solve?

211592n

1533910n3

1096144183n2

189724431n2

200,0004893140n log n

3,600,00060,0001000n

1 hour1 minute1 secondComplexity

11

Commonly Seen Time Bounds

too slowexponentialO(2n)

maybe OKcubicO(n3)

OKquadraticO(n2)

goodO(n log n)

goodlinearO(n)

excellentlogarithmicO(log n)

excellentconstantO(1)

12

Related Notations

■ Big-Omega

Definition: f(n) is a member of
the set Ω(g(n)) if and only if
there exists constants c
and N such that
0 ≤ c g(n) ≤ f(n), for all n≥N

■ Big-Theta

Definition: f(n) is a member of
the set Θ(g(n)) if and only if
f(n) = O(g(n)) and
f(n) = Ω(g(n))

3

13

Worst-Case/Expected-Case Bounds

■ We can’t determine time
bounds for all possible
inputs of size n

■ Simplifying assumption #4:
Determine number of steps
for either

● worst-case or
● expected-case

■ Worst-case
● Determine how much

time is needed for the
worst possible input of
size n

■ Expected-case
● Determine how much

time is needed on
average for all inputs of
size n

14

Our Simplifying Assumptions

1. Use the size of the input rather than the input itself

2. Count the number of “basic steps” rather than
computing exact times

3. Multiplicative constants aren’t important

4. Determine number of steps for either
● worst-case or
● expected-case

15

Worst-Case Analysis of Searching

■ Linear Search (check each
element)

static boolean find (int[] a, int item) {

for (int i = 0; i < a.length; i++) {
if (a[i] == item) return true;

}
return false;

}

For Linear Search, worst-case
time is O(n)

For Binary Search, worst-case
time is O(log n)

■ Binary Search

static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;

while (low <= high) {
int mid = (low+high)/2;

if (a[mid] < item)
low = mid+1;

else if (item < a[mid])

high = mid - 1;
else return true;

}
return false;

}

16

Analysis of Matrix Multiplication

Code for multiplying n-by-n
matrices A and B:

for (i = 0; i<n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
C[i][j] = C[i][j] + A[i][k] * B[k][j];

■ By convention, matrix
problems are measured in
terms of n, the number of
rows and columns

● Note that the input size
is 2n2

● Worst-case time is
O(n3)

● Expected-case time is
also O(n3)

