Algorithm Analysis

CS211 Fall 2000

What Makes a Good Algorithm?

- Suppose you have two possible algorithms or data structures that basically do the same thing; which is better?
 - Faster?
 - Less space?
 - Easier to code?
 - Easier to maintain?
 - Required for homework?
- How do we measure the first two?

Sample Problem: Searching

- Determine if a *sorted* array of integers contains a given integer
- 1st solution: Linear Search (check each element)

```
static boolean find (int[ ] a, int item) { for \ (int \ i=0; \ i< a.length; \ i++) \ \{ \\ \qquad \qquad if \ (a[i]==item) \ return \ true; \\ \} \\ return \ false; \\ \}
```

■ 2nd solution: Binary Search

```
static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {
  int mid = (low+high)/2;
  if (a[mid] < item)
      low = mid+1;
  else if (item < a[mid])
      high = mid - 1;
  else return true;
  }
return false;
```

Linear Search vs. Binary Search

- Which one is better?
 - Linear Search is easier to program
 - But Binary Search is faster... isn't it?
- How do we measure to show that one is faster than the other
 - Experiment?
 - Proof?
 - But which inputs do we use?
- Simplifying assumption #1: Use the *size* of the input rather than the input itself
 - For our sample search problem, the input size is n where n-1 is the array size
- Simplifying assumption #2: Count the number of "basic steps" rather than computing exact times

One Basic Step = One Time Unit

- Basic step:
 - input or output of a scalar value
 - accessing the value of a scalar variable, array element, or field of an object
 assignment to a variable,
 - array element, or field of an objecta single arithmetic or logical

operation

- method invocation (not counting argument evaluation and execution of the method
 had the second control of the method
- For a conditional, we count number of basic steps on the branch that is executed
- For a loop, we count number of basic steps in loop body times the number of iterations
- For a method, we count number of basic steps in method body (including steps needed to prepare stack-frame)

Runtime vs. Number of Basic Steps

- But isn't this cheating?
 - The runtime is not the same as the number of basic steps
 - Time per basic step varies depending on computer, on compiler, on details of code...
- Well... yes, it is cheating in a way
 - But the number of basic steps is proportional to the actual runtime

- Which is better?
 - n or n2 time?
 - 100 n or n² time?
 - 10,000 n or n² time?
- As n gets large, multiplicative constants become less important
- Simplifying assumption #3: Multiplicative constants aren't important

5

1

Using Big-O to Hide Constants

■ Roughly, f(n) = O(g(n))means that f(n) grows like g(n) or slower

Claim: $n^2 + n = O(n^2)$

We know $n \le n^2$ for $n \ge 1$

Definition: O(g(n)) is a set, f(n) is a member of this set if and only if there exist constants c and N such that $0 \le f(n) \le c g(n)$, for all $n \ge N$

So $n^2 + n \le 2 n^2$ for $n \ge 1$

■ Only the *leading* term (the term that grows most

rapidly) matters

So by definition, $n^2 + n = O(n^2)$

for c=2 and N=1

■ We should write $f(n) \in O(g(n))$

But by convention, we write

f(n) = O(g(n))

 $100 \text{ n} + \log \text{ n} = O(\text{n})$ for c=101 and N=1

 $\quad \text{for } n \geq 1$

Big-O Examples

Claim: 100 n + log n = O(n)

We know $\log n \le n$ for $n \ge 1$

So 100 n + log n \leq 101 n

So by definition,

Then $n = 2^k$ and (the subscripts are too messy;

switch to board)

 $\underline{\mathsf{Claim}} \colon \mathsf{log}_\mathsf{B} \ \mathsf{n} = \mathsf{O}(\mathsf{log} \ \mathsf{n})$

Let k = log n

Question: Which grows faster: sqrt(n) or log n?

Simple Big-O Examples

- Let $f(n) = 3n^2 + 6n 7$
 - Claim f(n) = O(n²)
 - Claim $f(n) = O(n^3)$
 - Claim f(n) = O(n⁴)
- $g(n) = 4n \log n + 34 n 89$
 - Claim g(n) = O(n log n)
 - Claim $g(n) = O(n^2)$
- $h(n) = 20 * 2^n + 40$
- Claim h(n) = O(2n)
- a(n) = 34
 - Claim a(n) = O(1)

Problem-Size Examples

■ Suppose we have a computing device that can execute 1000 operations per second; how large a problem can we solve?

Complexity	1 second	1 minute	1 hour
n	1000	60,000	3,600,000
n log n	140	4893	200,000
n²	31	244	1897
3n ²	18	144	1096
n ³	10	39	153
2 ⁿ	9	15	21

Commonly Seen Time Bounds

O(1)	constant	excellent
O(log n)	logarithmic	excellent
O(n)	linear	good
O(n log n)		good
O(n ²)	quadratic	OK
O(n³)	cubic	maybe OK
O(2 ⁿ)	exponential	too slow

Related Notations

■ Big-Omega

■ Big-Theta

Definition: f(n) is a member of the set $\Omega(g(n))$ if and only if there exists constants c and N such that $0 \le c \ g(n) \le f(n)$, for all $n \ge N$

Definition: f(n) is a member of the set $\Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$

Worst-Case/Expected-Case Bounds

- We can't determine time bounds for all possible inputs of size n
- Simplifying assumption #4:
 Determine number of steps for either
 - worst-case or
 - expected-case
- Worst-case
 - Determine how much time is needed for the worst possible input of size n
- Expected-case
 - Determine how much time is needed on average for all inputs of size n

Our Simplifying Assumptions

- 1. Use the size of the input rather than the input itself
- Count the number of "basic steps" rather than computing exact times
- 3. Multiplicative constants aren't important
- 4. Determine number of steps for either
 - · worst-case or
 - expected-case

14

Worst-Case Analysis of Searching

Linear Search (check each element)

$$\begin{split} \text{static boolean find (int[\]\ a, int item)} \ \{ \\ \text{for (int } i = 0; \ i < a.length; \ i++) \ \{ \\ \text{if (a[i]} == item) \ return \ true; \\ \\ \} \\ \text{return false;} \end{split}$$

For Linear Search, worst-case time is O(n)

For Binary Search, worst-case time is O(log n)

■ Binary Search

```
static boolean find (int[] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <= high) {
  int mid = (low+high)/2;
  if (a[mid] < item)
      low = mid+1;
  else if (item < a[mid])
      high = mid - 1;
  else return true;
  }
return false;
```

Analysis of Matrix Multiplication

Code for multiplying n-by-n matrices A and B:

$$\begin{split} &\text{for (i = 0; i < n; i++)} \\ &\text{for (j = 0; j < n; j++)} \\ &\text{for (k = 0; k < n; k++)} \\ &\text{C[i][j]} = C[i][j] + A[i][k] * B[k][j]; \end{split}$$

- By convention, matrix problems are measured in terms of n, the number of rows and columns
 - Note that the input size is 2n²
 - Worst-case time is O(n³)
 - Expected-case time is also O(n³)

16