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What Makes a Good Algorithm?

■ Suppose you have two possible algorithms or data 
structures that basically do the same thing; which is 
better?
● Faster?
● Less space?
● Easier to code?
● Easier to maintain?
● Required for homework?

■ How do we measure the first two?
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Sample Problem: Searching

■ Determine if a sorted array 
of integers contains a given 
integer

■ 1st solution: Linear Search 
(check each element)

static boolean find (int[ ] a, int item) {
for (int i = 0; i < a.length; i++) {

if (a[i] == item) return true;
}

return false;
}

■ 2nd solution: Binary Search

static boolean find (int[ ] a, int item) {
int low = 0;
int high = a.length - 1;
while (low <=  high) {

int mid = (low+high)/2;
if (a[mid] < item)

low = mid+1;
else if (item < a[mid])

high = mid - 1;
else return true;
}

return false;
}
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Linear Search vs. Binary Search

■ Which one is better?
● Linear Search is easier 

to program 
● But Binary Search is 

faster… isn’t it?

■ How do we measure to 
show that one is faster than 
the other

● Experiment?
● Proof?
● But which inputs do we 

use?

■ Simplifying assumption #1: 
Use the size of the input 
rather than the input itself

● For our sample search 
problem, the input size 
is n where n-1 is the 
array size

■ Simplifying assumption #2: 
Count the number of “basic 
steps” rather than 
computing exact times
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One Basic Step = One Time Unit

■ Basic step:
● input or output of a scalar 

value
● accessing the value of a 

scalar variable, array 
element, or field of an object

● assignment to a variable, 
array element, or field of an 
object

● a single arithmetic or logical 
operation

● method invocation (not 
counting argument evaluation 
and execution of the method 
body)

■ For a conditional, we count 
number of basic steps on 
the branch that is executed

■ For a loop, we count 
number of basic steps in 
loop body times the 
number of iterations

■ For a method, we count 
number of basic steps in 
method body (including 
steps needed to prepare 
stack-frame)
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Runtime vs. Number of Basic Steps

■ But isn’t this cheating?
● The runtime is not the 

same as the number of 
basic steps

● Time per basic step 
varies depending on 
computer, on compiler, 
on details of code…

■ Well… yes, it is cheating in 
a way

● But the number of basic 
steps is proportional to 
the actual runtime

■ Which is better?
● n or n2 time?
● 100 n or n2 time?
● 10,000 n or n2 time?

■ As n gets large, 
multiplicative constants 
become less important

■ Simplifying assumption #3: 
Multiplicative constants 
aren’t important
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Using Big-O to Hide Constants

■ Roughly, f(n) = O(g(n))
means that f(n) grows like 
g(n) or slower

Definition: O(g(n)) is a set;
f(n) is a member of this set 
if and only if there exist 
constants c and N such that
0 ≤ f(n) ≤ c g(n), for all n≥N

■ We should write
f(n) ∈ O(g(n))

■ But by convention, we write 
f(n) = O(g(n))

Claim: n2 + n = O(n2)

We know n ≤ n2 for n ≥1

So n2 + n ≤ 2 n2 for n ≥1

So by definition,
n2 + n = O(n2)

for c=2 and N=1
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Big-O Examples

Claim: 100 n + log n = O(n)

We know log n ≤ n for n ≥ 1

So 100 n + log n ≤ 101 n 
for n ≥ 1

So by definition,
100 n + log n = O(n)

for c=101 and N=1

Claim: logB n = O(log n)

Let k = log n

Then n = 2k and  (the 
subscripts are too messy; 
switch to board)

Question: Which grows 
faster: sqrt(n) or log n?
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Simple Big-O Examples

■ Let f(n) = 3n2 + 6n – 7
● Claim f(n) = O(n2)
● Claim f(n) = O(n3)
● Claim f(n) = O(n4)
● …

■ g(n) = 4n log n + 34 n – 89
● Claim g(n) = O(n log n)
● Claim g(n) = O(n2)

■ h(n) = 20 * 2n + 40
● Claim h(n) = O(2n)

■ a(n) = 34
● Claim a(n) = O(1)

■ Only the leading term (the 
term that grows most 
rapidly) matters
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Problem-Size Examples

■ Suppose we have a computing device that can 
execute 1000 operations per second; how large a 
problem can we solve?

211592n

1533910n3

1096144183n2

189724431n2

200,0004893140n log n

3,600,00060,0001000n

1 hour1 minute1 secondComplexity
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Commonly Seen Time Bounds

too slowexponentialO(2n)

maybe OKcubicO(n3)

OKquadraticO(n2)

goodO(n log n)

goodlinearO(n)

excellentlogarithmicO(log n)

excellentconstantO(1)
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Related Notations

■ Big-Omega

Definition: f(n) is a member of 
the set Ω(g(n)) if and only if 
there exists constants c 
and N such that
0 ≤ c g(n) ≤ f(n), for all n≥N

■ Big-Theta

Definition: f(n) is a member of 
the set Θ(g(n)) if and only if 
f(n) = O(g(n)) and 
f(n) = Ω(g(n))
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Worst-Case/Expected-Case Bounds

■ We can’t determine time 
bounds for all possible 
inputs of size n

■ Simplifying assumption #4: 
Determine number of steps 
for either

● worst-case or
● expected-case

■ Worst-case
● Determine how much 

time is needed for the 
worst possible input of 
size n

■ Expected-case
● Determine how much 

time is needed on 
average for all inputs of 
size n
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Our Simplifying Assumptions

1. Use the size of the input rather than the input itself

2. Count the number of “basic steps” rather than 
computing exact times

3. Multiplicative constants aren’t important

4. Determine number of steps for either
● worst-case or
● expected-case

15

Worst-Case Analysis of Searching

■ Linear Search (check each 
element)

static boolean find (int[ ] a, int item) {

for (int i = 0; i < a.length; i++) {
if (a[i] == item) return true;

}
return false;

}

For Linear Search, worst-case 
time is O(n)

For Binary Search, worst-case 
time is O(log n)

■ Binary Search

static boolean find (int[ ] a, int item) {
int low = 0;
int high = a.length - 1;

while (low <=  high) {
int mid = (low+high)/2;

if (a[mid] < item)
low = mid+1;

else if (item < a[mid])

high = mid - 1;
else return true;

}
return false;

} 
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Analysis of Matrix Multiplication

Code for multiplying n-by-n  
matrices A and B:

for (i = 0; i<n; i++)
for (j = 0; j < n; j++)

for (k = 0; k < n; k++)
C[i][j] = C[i][j] + A[i][k] * B[k][j];

■ By convention, matrix 
problems are measured in 
terms of n, the number of 
rows and columns

● Note that the input size 
is 2n2

● Worst-case time is 
O(n3)

● Expected-case time is 
also O(n3)


