
1

Finish Union/Find, Finish Graph 
Algorithms, Quick Overview

CS211
Fall 2000

2

Union/Find
■ Operations

● Union: Combine two sets
● Find: Given an item, 

determine the “name” of the 
set that contains it

■ Use reverse trees
● Each item points at its parent
● The root is the “name” of the 

set
■ Union-by-Size

● Always make the larger tree 
be the root

■ Path Compression
● Every time we “find” 

something, we update every 
item we touch so that it points 
at the root

1

52

8 9 7 3 4

0 6
1

52

8 9 7 3

4

0

6

find(6)

path 
compression

3

Union/Find Analysis

Theorem (Tarjan)
Using weighted union and 
path compression, a 
sequence of n union/find 
operations takes time 
O(n α(n))

■ Note that α(n) ≤ 4 for any 
integer n that we are ever
likely to encounter

■ Is the α(n) factor really 
necessary?

● Yes: Tarjan showed a 
lower bound of 
Ω(n α(n)) for union/find

● Claim: the inverse 
Ackerman’s function is 
not just an artifact of this 
one problem

4

Lower Envelope of Line Segments

■ Given n line segments in 
the plane, what is the 
worst-case complexity of 
their lower envelope?

Θ(n α(n))

lower envelope

5

Two MST Algorithms (Both Greedy)

Kruskal’s Algorithm

■ Choose the shortest edge 
e such that

● e is not yet processed
● e does not make a cycle

Prim’s Algorithm

■ Choose the shortest edge 
e such that

● e touches the tree 
● e touches a vertex not 

in the tree

6

Kruskal’s MST Algorithm

KruskalMST(G):
E = edges of G; 
forest = empty;
do

<u,v> = least cost edge of E;
E = E - <u,v>;
if (u and v in different trees)

forest = forest ∪ <u,v>;
while (E is nonempty);
return forest

■ Can sort the edges initially 
(or can use a PQ)

■ Use Union/Find to check 
for different trees and to 
combine trees

■ Total worst-case time: 
O(e log e) when using 
adjacency lists

■ Time is O(v2 + e log e) for 
adjacency matrix



2

7

Quick Review: Programming Topics

Object Oriented Programming
● Classes and Objects

▲ Parameter Passing
▲ Objects vs. References 
▲ Abstraction
▲ Encapsulation

● Inheritance
▲ Polymorphism
▲ Dynamic Method 

Binding
▲ Abstract Classes
▲ Interfaces
▲ Upcasting vs. 

Downcasting

Other Topics
● Access-Control 

Modifiers
● Packages
● Exceptions
● Program Design

▲ UML Diagrams
▲ Pseudo-code
▲ Javadoc

● GUIs
▲ Layout
▲ Event Handling

8

Quick Review: Data-Structure Topics

■ Data Structures for 
Sequencing

● Stack
● Queue
● Priority Queue

■ Graphs (Adj List, Adj Matrix)
● Shortest Paths

▲ Breadth First Search
▲ Dijkstra’s Algorithm

● Minimum Spanning Trees 
▲ Prim’s Alg (single tree)
▲ Kruskal’s Alg (forest)

■ Searching and Sorting in 
Arrays

● Binary Search
● Quick Sort
● Merge Sort
● Insertion Sort
● Heap Sort
● Sorting Lower Bound

■ Data Structures for 
Searching (Dictionaries)

● Hash Table
● Binary Search Tree
● Balanced Trees

9

Quick Review: Additional Topics

■ Recursion
● Recursive Descent 

Parsing
● Stack Frames
● Induction

■ Algorithm Analysis
● Big-O
● Worst- vs. Expected-Case

■ Algorithm Design Methods
● Divide and Conquer
● Greedy Method

■ Union/Find
● union-by-size
● path compression

■ The Java Collections 
Framework

● Interfaces: Set, SortedSet, 
List, Map, SortedMap, 
Iterator

● Classes: HashSet,
TreeSet, ArrayList,
LinkedList, HashMap,
TreeMap

● Utilities: java.util.Arrays, 
java.util.Collections

● Comparator vs. 
Comparable

10

What I Do: Computational Geometry

■ Using a computer to solve 
geometric problems

● Get to use lots of data 
structure ideas

● Example
▲ Given n line segments in the 

plane, report all intersections

▲ Uses both a PQ and a 
Balanced Tree

■ Areas I work in
● Motion Planning
● Meshing
● Shape Matching

▲ computer vision

▲ protein matching

● More theoretical questions

sweepline


