## More Graph Algorithms: <br> Minimum Spanning Trees

| Greedy Algorithms |  |
| :---: | :---: |
| - Dijkstra's Algorithm is an example of a Greedy Algorithm <br> - The Greedy Strategy is an algorithm design technique <br> - Like Divide \& Conquer <br> - The Greedy Strategy is used to solve optimization problems <br> - The goal is to find the best solution <br> Works when the problem has the greedy-choice property <br> - A global optimum can be reached by making locally optimum choices | - Problem: Given an amount of money, find the smallest number of coins to make that amount <br> - Solution: Use a Greedy Algorithm <br> - Give as many large coins as you can <br> - This greedy strategy produces the optimum number of coins for the US coin system <br> - Different money system $\Rightarrow$ greedy strategy may fail <br> - For example: suppose the US introduces a 4¢ coin |
| 3 |  |





| Similar Code Structures |
| :---: | :---: |

## Remembering Your Choices

- How can you remember
which choices were made? while (some vertices are unmarked) \{
- Whenever dist[ w$]$ is $\quad \mathrm{v}=$ best of unmarked vertices updated we can Mark v;
remember the current $v \quad$ for (each $w$ adj to $v$ )
by using parent $[\mathrm{w}]=\mathrm{v}$;
Update w;
if ( $w$ changed) parent $[w]=v$;
- Can use the parent info to construct the bfs tree, the shortest path tree,
or the minimum
spanning tree

| New Problem: Connectivity |  |
| :---: | :---: |
| Given a set of integer pairs $(p, q)$, determine if $p^{\prime}$ and $q^{\prime}$ are connected <br> Example: <br> - Given pairs $(1,3)(2,3)$ $(5,4)(6,3)(7,5)(1,6)$ $(7,0)(0,8)(5,2)$ <br> - Are 4 and 6 connected? <br> How can a computer resolve this for a large set? |  |


| Union and Find |  |
| :---: | :---: |
| We break this problem into two operations <br> - Union: Combine two sets <br> - Find: Given an item, determine the "name" of the set that contains it | Many applications <br> - Checking components of a dynamic graph <br> - Computers in a network: Can p communicate with $q$ ? <br> - Minimum Spanning Trees |
| 10 |  |


| Union/Find using Reverse Trees |
| :--- | :--- |

## An Improvement: Union by Size

- Note: Every union takes one tree and moves everything in it one step farther from the root
- Idea: Make the smaller tree be the one that moves down
- Can show
- Time for union is $\mathrm{O}(1)$
- Time for find is $\mathrm{O}(\log \mathrm{n})$

12

- Implement using arrays

■ Initially, all items have no parent and size 1




Union-by-Size + Path Compression

- Idea: Every time we "find" something, we update every item we touch so that it points at the root
- This is almost free since we have to touch these items anyway
- Intuition: next time we find one of these items it will be quicker



## Ackerman's Function

- $\mathrm{A}(0, \mathrm{q})=2+\ldots+2=2 \mathrm{q}$

■ Thus $A(2,4)=2^{16}=65,536$

- $A(1, q)=2 * \ldots * 2=2^{q}$
$-A(2, q)=2$
Each level does the operation from the previous level q times (a height-q stack of 2's)
- What is $\mathrm{A}(3,4)$ ?
- So $A(4,4)$ must be extremely large

| Definition for $\alpha(\mathrm{n})$ |  |
| :---: | :---: |
| Definition (inverse <br> Ackerman's function) $\alpha(n)=$ <br> least $x$ such that $A(x, x) \geq n$ <br> Note that $\alpha(\mathrm{n}) \leq 4$ for any integer n that we are ever likely to encounter | Is the $\alpha(\mathrm{n})$ factor really necessary? <br> - Yes: Tarjan showed a lower bound of $\Omega(\mathrm{n} \alpha(\mathrm{n})$ ) for union/find <br> - Claim: the inverse Ackerman's function is not just an artifact of this one problem |

