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More Graph Algorithms: 
Minimum Spanning Trees
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Dijkstra’s Algorithm

■ Intuition

● Edges are threads; vertices 
are beads

● Pick up at s; mark each node 
as it leave the table

■ Note: Negative edge-costs are 
not allowed

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with 

smallest dist;
Mark v; // v leaves “table”
for (each w adj to v) {

dist[w] = min
[ dist[w], dist[v] + c(v,w) ];

}
}
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Greedy Algorithms

■ Dijkstra’s Algorithm is an 
example of a Greedy 
Algorithm

■ The Greedy Strategy is an 
algorithm design technique

● Like Divide & Conquer

■ The Greedy Strategy is used 
to solve optimization problems

● The goal is to find the best
solution

■ Works when the problem has 
the greedy-choice property

● A global optimum can be 
reached by making locally 
optimum choices

■ Problem: Given an amount of 
money, find the smallest 
number of coins to make that 
amount

■ Solution: Use a Greedy 
Algorithm

● Give as many large coins 
as you can

■ This greedy strategy produces 
the optimum number of coins 
for the US coin system

■ Different money system ⇒
greedy strategy may fail

● For example: suppose the 
US introduces a 4¢ coin
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Minimum Spanning Trees

Definition
A spanning tree of an 
undirected graph G is a 
tree whose nodes are the 
vertices of G and whose 
edges are a subset of the 
edges of G

Definition
A Minimum Spanning Tree 
(MST) for a weighted graph 
G is the spanning tree of 
least cost (sum of edge-
weights)

■ Alternately, an MST can be 
defined as the least-cost set 
of edges so that all the 
vertices are connected

● This has to be a tree… 
Why?

■ A greedy strategy works for 
this problem

● Add vertices one at a time

● Always add the one that is 
closest to the current tree

● This is called Prim’s 
Algorithm
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An Example Graph and Its MST
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Prim’s Algorithm

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of smallest tree-

to-v edge

● Initially, dist[v] = ∞, for all v

prim(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with 
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min[ dist[w], c(v,w) ];
}

}

■ Runtime analysis 
● O(v2) for adj matrix

▲ While-loop is executed 
v times

▲ For-loop takes O(v) 
time

● O(e + v log v) for adj list
▲ Use a PQ

▲ Regular PQ produces 
time O(v + e log e)

▲ Can improve to 
O(e + v log v) by using 
fancier heap
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Similar Code Structures

while (some vertices are unmarked) {

v = best of unmarked vertices;

Mark v;

for (each w adj to v)

Update w;

}

■ bfsDistance
● best: next in queue
● update: 

dist[w] = dist[v]+1

■ dijkstra
● best: next in PQ
● update:dist[w] =min [ 

dist[w],dist[v]+cost(v,w)]
■ prim

● best: next in PQ

● update: dist[w] = min [ 
dist[w],cost(v,w)]
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Remembering Your Choices

■ How can you remember 
which choices were made?

● Whenever dist[w] is 
updated we can 
remember the current v 
by using parent[w] = v;

● Can use the parent info 
to construct the bfs tree, 
the shortest path tree, 
or the minimum 
spanning tree

while (some vertices are unmarked) {

v = best of unmarked vertices;

Mark v;

for (each w adj to v)

Update w;

if (w changed) parent[w] = v;

}
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New Problem: Connectivity

■ Given a set of integer pairs 
(p,q), determine if p’ and q’ 
are connected

■ Example:
● Given pairs (1,3) (2,3) 

(5,4) (6,3) (7,5) (1,6) 
(7,0) (0,8) (5,2)

● Are 4 and 6 connected?

■ How can a computer 
resolve this for a large set?
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Union and Find

■ We break this problem into 
two operations

● Union: Combine two 
sets

● Find: Given an item, 
determine the “name” of 
the set that contains it

■ Many applications
● Checking components 

of a dynamic graph
● Computers in a network: 

Can p communicate 
with q?

● Minimum Spanning 
Trees
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Union/Find using Reverse Trees

■ Find
● Follow links to root
● Time O(n) in the worst 

case

■ Union
● Link root of one tree to 

the root of the other
● Time O(1) in the worst 

case
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The root is the “name” of the set
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An Improvement: Union by Size

■ Note: Every union takes 
one tree and moves 
everything in it one step 
farther from the root

■ Idea: Make the smaller tree 
be the one that moves 
down

■ Can show

● Time for union is O(1)
● Time for find is O(log n)

■ Implement using arrays
■ Initially, all items have no 

parent and size 1

parent size
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Union-by-Size Lemma

Lemma
A tree with height h 
contains at least 2h nodes

Proof

● The only way in which a 
node can change its 
level is when it is within 
the smaller of two trees 
participating in a union

● Thus, when any node x
drops a level, the tree 
that it is within doubles 
in size (or more)

● If a node is at level h 
then it is within a tree of 
size at least 2h

Corollary
Worst-case time for find is 
O(log n) where n is the 
total number of items

Proof
● The largest possible 

tree contains n nodes, 
so the deepest node is 
at level log n
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Union-by-Size + Path Compression

■ Idea: Every time we “find” 
something, we update 
every item we touch so that 
it points at the root

● This is almost free since 
we have to touch these 
items anyway

● Intuition: next time we 
find one of these items it 
will be quicker

■ Does this help?
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Yes, It Helps

Theorem (Tarjan)
Using weighted union and 
path compression, a 
sequence of n union/find 
operations takes time 
O(n α(n))

■ The function α(n) is the 
inverse of Ackerman’s 
function and it grows very
slowly

Definition (Ackerman’s 
function)

A(p,q)=2q if p = 0
0 if q=0, p>0
2 if q=1, p>0
A(p -1,A(p,q -1))

if q>1, p>0

This definition is a bit different 
from the text’s version, but 
both have similar 
properties
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Ackerman’s Function

■ A(0,q) = 2 + … + 2 = 2q

■ A(1,q) = 2 ∗ … ∗ 2 = 2q

■ A(2,q) = 22
(a height-q stack of 2’s)

■ Thus A(2,4) = 216 = 65,536

■ Each level does the 
operation from the previous 
level q times

■ What is A(3,4)?

■ So A(4,4) must be 
extremely large
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Definition for α(n)

Definition (inverse 
Ackerman’s function)

α(n) = 
least x such that A(x,x) ≥ n

Note that α(n) ≤ 4 for any 
integer n that we are ever
likely to encounter

■ Is the α(n) factor really 
necessary?

● Yes: Tarjan showed a 
lower bound of 
Ω(n α(n)) for union/find

● Claim: the inverse 
Ackerman’s function is 
not just an artifact of this 
one problem


