
1

More Graph Algorithms:
Minimum Spanning Trees

CS211

Fall 2000

2

Dijkstra’s Algorithm

■ Intuition

● Edges are threads; vertices
are beads

● Pick up at s; mark each node
as it leave the table

■ Note: Negative edge-costs are
not allowed

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with

smallest dist;
Mark v; // v leaves “table”
for (each w adj to v) {

dist[w] = min
[dist[w], dist[v] + c(v,w)];

}
}

S BA

C D E

F

5

49

2

1
1

2

1

9

2

3

Greedy Algorithms

■ Dijkstra’s Algorithm is an
example of a Greedy
Algorithm

■ The Greedy Strategy is an
algorithm design technique

● Like Divide & Conquer

■ The Greedy Strategy is used
to solve optimization problems

● The goal is to find the best
solution

■ Works when the problem has
the greedy-choice property

● A global optimum can be
reached by making locally
optimum choices

■ Problem: Given an amount of
money, find the smallest
number of coins to make that
amount

■ Solution: Use a Greedy
Algorithm

● Give as many large coins
as you can

■ This greedy strategy produces
the optimum number of coins
for the US coin system

■ Different money system ⇒
greedy strategy may fail

● For example: suppose the
US introduces a 4¢ coin

4

Minimum Spanning Trees

Definition
A spanning tree of an
undirected graph G is a
tree whose nodes are the
vertices of G and whose
edges are a subset of the
edges of G

Definition
A Minimum Spanning Tree
(MST) for a weighted graph
G is the spanning tree of
least cost (sum of edge-
weights)

■ Alternately, an MST can be
defined as the least-cost set
of edges so that all the
vertices are connected

● This has to be a tree…
Why?

■ A greedy strategy works for
this problem

● Add vertices one at a time

● Always add the one that is
closest to the current tree

● This is called Prim’s
Algorithm

5

An Example Graph and Its MST

A

E

C
D

G

F

B

7

4

8

27

9

1

3

6

11 10

5

A

E

C
D

G

F

B

4

8

2

1

3

5

6

Prim’s Algorithm

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of smallest tree-

to-v edge

● Initially, dist[v] = ∞, for all v

prim(s):
dist[s] = 0;
while (some vertices are unmarked) {

v = unmarked vertex with
smallest dist;

Mark v;
for (each w adj to v) {

dist[w] = min[dist[w], c(v,w)];
}

}

■ Runtime analysis
● O(v2) for adj matrix

▲ While-loop is executed
v times

▲ For-loop takes O(v)
time

● O(e + v log v) for adj list
▲ Use a PQ

▲ Regular PQ produces
time O(v + e log e)

▲ Can improve to
O(e + v log v) by using
fancier heap

2

7

Similar Code Structures

while (some vertices are unmarked) {

v = best of unmarked vertices;

Mark v;

for (each w adj to v)

Update w;

}

■ bfsDistance
● best: next in queue
● update:

dist[w] = dist[v]+1

■ dijkstra
● best: next in PQ
● update:dist[w] =min [

dist[w],dist[v]+cost(v,w)]
■ prim

● best: next in PQ

● update: dist[w] = min [
dist[w],cost(v,w)]

8

Remembering Your Choices

■ How can you remember
which choices were made?

● Whenever dist[w] is
updated we can
remember the current v
by using parent[w] = v;

● Can use the parent info
to construct the bfs tree,
the shortest path tree,
or the minimum
spanning tree

while (some vertices are unmarked) {

v = best of unmarked vertices;

Mark v;

for (each w adj to v)

Update w;

if (w changed) parent[w] = v;

}

9

New Problem: Connectivity

■ Given a set of integer pairs
(p,q), determine if p’ and q’
are connected

■ Example:
● Given pairs (1,3) (2,3)

(5,4) (6,3) (7,5) (1,6)
(7,0) (0,8) (5,2)

● Are 4 and 6 connected?

■ How can a computer
resolve this for a large set?

8

7

6

5

1

4

3

2

0

10

Union and Find

■ We break this problem into
two operations

● Union: Combine two
sets

● Find: Given an item,
determine the “name” of
the set that contains it

■ Many applications
● Checking components

of a dynamic graph
● Computers in a network:

Can p communicate
with q?

● Minimum Spanning
Trees

11

Union/Find using Reverse Trees

■ Find
● Follow links to root
● Time O(n) in the worst

case

■ Union
● Link root of one tree to

the root of the other
● Time O(1) in the worst

case

1

2 3

4 9

8 6 7

5

The root is the “name” of the set

12

An Improvement: Union by Size

■ Note: Every union takes
one tree and moves
everything in it one step
farther from the root

■ Idea: Make the smaller tree
be the one that moves
down

■ Can show

● Time for union is O(1)
● Time for find is O(log n)

■ Implement using arrays
■ Initially, all items have no

parent and size 1

parent size

0
1
2
.
.
.
.
.
.
n

3

13

Union-by-Size Lemma

Lemma
A tree with height h
contains at least 2h nodes

Proof

● The only way in which a
node can change its
level is when it is within
the smaller of two trees
participating in a union

● Thus, when any node x
drops a level, the tree
that it is within doubles
in size (or more)

● If a node is at level h
then it is within a tree of
size at least 2h

Corollary
Worst-case time for find is
O(log n) where n is the
total number of items

Proof
● The largest possible

tree contains n nodes,
so the deepest node is
at level log n

14

Union-by-Size + Path Compression

■ Idea: Every time we “find”
something, we update
every item we touch so that
it points at the root

● This is almost free since
we have to touch these
items anyway

● Intuition: next time we
find one of these items it
will be quicker

■ Does this help?

1

52

8 9 7 3 4

0 6
1

52

8 9 7 3

4

0

6

find(6)

15

Yes, It Helps

Theorem (Tarjan)
Using weighted union and
path compression, a
sequence of n union/find
operations takes time
O(n α(n))

■ The function α(n) is the
inverse of Ackerman’s
function and it grows very
slowly

Definition (Ackerman’s
function)

A(p,q)=2q if p = 0
0 if q=0, p>0
2 if q=1, p>0
A(p -1,A(p,q -1))

if q>1, p>0

This definition is a bit different
from the text’s version, but
both have similar
properties

16

Ackerman’s Function

■ A(0,q) = 2 + … + 2 = 2q

■ A(1,q) = 2 ∗ … ∗ 2 = 2q

■ A(2,q) = 22
(a height-q stack of 2’s)

■ Thus A(2,4) = 216 = 65,536

■ Each level does the
operation from the previous
level q times

■ What is A(3,4)?

■ So A(4,4) must be
extremely large

2

17

Definition for α(n)

Definition (inverse
Ackerman’s function)

α(n) =
least x such that A(x,x) ≥ n

Note that α(n) ≤ 4 for any
integer n that we are ever
likely to encounter

■ Is the α(n) factor really
necessary?

● Yes: Tarjan showed a
lower bound of
Ω(n α(n)) for union/find

● Claim: the inverse
Ackerman’s function is
not just an artifact of this
one problem

