Graph Algorithms: Shortest Paths

CS211
Fall 2000

Sorting in Linear Time

There are several sorting = How do these methods get
methods that take linear around the Q(n log n) lower
time bound?

« They don't use
= Counting Sort comparisons
« sorts integers from a
small range: [0..K] = What sorting method works
where k = O(n) best?
= Radix Sort « QuickSort is best
« the method used by the general-purpose sort
old card-sorters « Counting Sort or Radix
. sorting time O(dn) Sort can be best for
where d is the number some kinds of data
of “digits”

Aside: An Open Question on Sorting

How long does it take to a sort What if it's an addition table?
an n-by-n table of
numbers?

n-by-n

= O(n?log n) because there

are n? numbers in the table . .
= Shouldn't it be easier to

sort than an arbitrary set of
n? numbers?

Recall Digraphs

= Adjacency Matrix = Adjacency List
« Space O(V?) « Space O(e+v)
g[u][v] is true iff there is an The list for u contains v iff
edge fromutov there is an edge from u to v
0 1 2 3
T T
T

w N B O
-

Recall Weighted Digraphs

= Adjacency Matrix = Adjacency List
g[u][v] is c iff there is an edge The list for u contains v,c iff
of cost ¢ fromu to v there is an edge from u to v
0 1 2 3 that has cost ¢
0 15 11 0
1 20 1
2|8 2
3 3

Goal: Find Shortest Path in a Graph

» Finding the shortest (min-cost) path in a graph is a
problem that occurs often
« Find the least-cost route between Ithaca and Detroit
« Result depend on our notion of cost
 least mileage
a least time
a cheapest
4 least boring
« All of these “costs” can be represented as edge
costs on a graph
= How do we find a shortest path?

Shortest Paths for Unweighted Graphs

bfsDistance(s):
Il s is the start vertex
9 e e /1 dist[v] is length of s-to-v path
/1 Initially dist[v] = o for all v
dist[s] = 0;

G Q G Q.insert(s);
' while (Q nonempty) {
G v =Q.get();

for (each w adjacent to v) {
if (dist[w] == o) {
dist[w] = dist[v]+1;

Analysis for bfsDistance

= How many times can a bfsDistance(s):
vertex be placed in the s s the start vertex
ueue? 1/ dist[v] is length of s-to-v path
q : . I Initially dist[v] = « for all v
= How much time for the for- dist[s] = 0;
loop? Quinsert(s);
« Depends on il
representation W 'ev(‘f g’;:l'(';_mm
 Adjacency Matrix: O(v) for (each w adjacent to v) {
1 Adjacency List: O(e,) if (dist[w] == o) {
dist[w] = dist[v]+1;
Time: Q.insert(w);
- .)
« O(v?) for adj matrix }
« O(e+v) for adj list !

Q.insert(w);
}
}
}
7
If There are Edge Costs?
= Ildea#1 n |dea #2
« Add false nodes so that « Nothing “interesting”
all edge costs are 1 happens at the false
« Butwhat if edge costs nodes
are large? « Can't we just jump
« What if the costs aren't ahead to the next “real”
integers? node

Rule: always do the
closest (real) node first
« Use the array dist[] to
1 Report answers

1 Keep track of what to
do next

Dijkstra’ s Algorithm

= Intuition « sisthe start vertex
. Edges are threads; vertices « (i) is the cost fromitoj
are beads « Initially, vertices are unmarked

dist[v] is length of s-to-v path
Initially, dist[v] = oo, for all v

« Pick up at s; mark each node
as it leave the table
= Note: Negative edge-costs are

not allowed dijsktra(s):
dist[s] = 0;

5 9 while (some vertices are unmarked) {
O e O
9 4 1

v = unmarked vertex with
smallest dist;
Mark v;
for (each w adj to v) {
dist[w] = min
[dist[w], dist[v] + c(v,w)];

Dijkstra’ s Algorithm using Adj Matrix

™ WhiIe-Ioop is done v « sisthe start vertex
N « c(i,j) is the cost fromito j
times « Initially, vertices are unmarked
= Within the |00p « dist[v] is length of s-to-v path
. Choosing v takes O(V) Initially, dist[v] = o, for all v
time dijsktra(s):
« For-loop takes O(v) time dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with
smallest dist;
Mark v;
for (each w adj to v) {
dist[w] = min
[dist[w], dist[v] + c(v,w)];

= Total time = O(v?)

Dijkstra’ s Algorithm using Adj List

s is the start vertex

c(i,j) is the cost from i to j
Initially, vertices are unmarked
« dist[v] is length of s-to-v path
Initially, dist[v] = o, for all v

= Looks like we need a PQ
« Problem: priorities are
updated as algorithm runs
« Can insert pair (v,dist[v]) in
PQ whenever dist[v] is

updated dijsktra(s):
« At most e things in PQ dist[s] = 0;
= Time O(v + e log e) while (some vertices are unmarked) {
v = unmarked vertex with

= Using a more complicated PQ

(e.g., Pairing Heap), time can Marin;?"esm's‘:

be brought down to " 'h d

O(e+vlogv) or (each w adj to v) {
dist[w] = min

[dist[w], dist[v] + c(v,w)];

