
1

Graph Algorithms: Shortest Paths

CS211

Fall 2000

2

Sorting in Linear Time

There are several sorting
methods that take linear
time

■ Counting Sort
● sorts integers from a

small range: [0..k]
where k = O(n)

■ Radix Sort
● the method used by the

old card-sorters
● sorting time O(dn)

where d is the number
of “digits”

■ How do these methods get
around the Ω(n log n) lower
bound?

● They don’t use
comparisons

■ What sorting method works
best?

● QuickSort is best
general-purpose sort

● Counting Sort or Radix
Sort can be best for
some kinds of data

3

Aside: An Open Question on Sorting

How long does it take to a sort
an n-by-n table of
numbers?

■ O(n2log n) because there
are n2 numbers in the table

What if it’s an addition table?

■ Shouldn’t it be easier to
sort than an arbitrary set of
n2 numbers?

n-by-n

+ 1 3 5 8
2 3 5 7 10

10 11 13 15 18
12 13 15 18 20
14 15 17 19 22

4

Recall Digraphs

■ Adjacency Matrix
● Space O(v2)

g[u][v] is true iff there is an
edge from u to v

■ Adjacency List
● Space O(e+v)

The list for u contains v iff
there is an edge from u to v

0

3

2 1

3

T2

T1

TT0

3210

3

2

1

0 1 3

2

0

5

Recall Weighted Digraphs

■ Adjacency Matrix
g[u][v] is c iff there is an edge
of cost c from u to v

■ Adjacency List
The list for u contains v,c iff
there is an edge from u to v
that has cost c

0

3

2 1

3

82

201

11150

3210

3

2

1

0

15
8

11

20

1 15

0 8

2 20

3 11

6

Goal: Find Shortest Path in a Graph

■ Finding the shortest (min-cost) path in a graph is a
problem that occurs often
● Find the least-cost route between Ithaca and Detroit
● Result depend on our notion of cost

▲ least mileage

▲ least time

▲ cheapest

▲ least boring

● All of these “costs” can be represented as edge
costs on a graph

■ How do we find a shortest path?

2

7

Shortest Paths for Unweighted Graphs

bfsDistance(s):

// s is the start vertex
// dist[v] is length of s-to-v path

// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {

v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}

S BA

C D E

F

8

Analysis for bfsDistance

■ How many times can a
vertex be placed in the
queue?

■ How much time for the for-
loop?

● Depends on
representation

▲ Adjacency Matrix: O(v)

▲ Adjacency List: O(ev)

■ Time:

● O(v2) for adj matrix
● O(e+v) for adj list

bfsDistance(s):

// s is the start vertex
// dist[v] is length of s-to-v path

// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {

v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}

9

If There are Edge Costs?

■ Idea #1
● Add false nodes so that

all edge costs are 1
● But what if edge costs

are large?
● What if the costs aren’t

integers?

■ Idea #2
● Nothing “interesting”

happens at the false
nodes

● Can’t we just jump
ahead to the next “real”
node

● Rule: always do the
closest (real) node first

● Use the array dist[] to
▲ Report answers

▲ Keep track of what to
do next

10

Dijkstra’s Algorithm

■ Intuition

● Edges are threads; vertices
are beads

● Pick up at s; mark each node
as it leave the table

■ Note: Negative edge-costs are
not allowed

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with

smallest dist;
Mark v;
for (each w adj to v) {

dist[w] = min
[dist[w], dist[v] + c(v,w)];

}
}

S BA

C D E

F

5

49

2

1
1

2

1

9

2

11

Dijkstra’s Algorithm using Adj Matrix

■ While-loop is done v
times

■ Within the loop
● Choosing v takes O(v)

time

● For-loop takes O(v) time

■ Total time = O(v2)

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with

smallest dist;
Mark v;
for (each w adj to v) {

dist[w] = min
[dist[w], dist[v] + c(v,w)];

}
}

12

Dijkstra’s Algorithm using Adj List

■ Looks like we need a PQ

● Problem: priorities are
updated as algorithm runs

● Can insert pair (v,dist[v]) in
PQ whenever dist[v] is
updated

● At most e things in PQ

■ Time O(v + e log e)

■ Using a more complicated PQ
(e.g., Pairing Heap), time can
be brought down to
O(e + v log v)

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with

smallest dist;
Mark v;
for (each w adj to v) {

dist[w] = min
[dist[w], dist[v] + c(v,w)];

}
}

