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Sorting in Linear Time

There are several sorting 
methods that take linear 
time

■ Counting Sort
● sorts integers from a 

small range: [0..k] 
where k = O(n)

■ Radix Sort
● the method used by the 

old card-sorters
● sorting time O(dn) 

where d is the number 
of “digits”

■ How do these methods get 
around the Ω(n log n) lower 
bound?

● They don’t use 
comparisons

■ What sorting method works 
best?

● QuickSort is best 
general-purpose sort

● Counting Sort or Radix 
Sort can be best for 
some kinds of data
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Aside: An Open Question on Sorting 

How long does it take to a sort 
an n-by-n table of 
numbers?

■ O(n2log n) because there 
are n2 numbers in the table

What if it’s an addition table?

■ Shouldn’t it be easier to 
sort than an arbitrary set of 
n2 numbers?

n-by-n

+ 1 3 5 8
2 3 5 7 10

10 11 13 15 18
12 13 15 18 20
14 15 17 19 22
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Recall Digraphs

■ Adjacency Matrix
● Space O(v2)

g[u][v] is true iff there is an 
edge from u to v

■ Adjacency List
● Space O(e+v)

The list for u contains v iff 
there is an edge from u to v
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Recall Weighted Digraphs

■ Adjacency Matrix
g[u][v] is c iff there is an edge 
of cost c from u to v

■ Adjacency List
The list for u contains v,c iff 
there is an edge from u to v 
that has cost c
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Goal: Find Shortest Path in a Graph

■ Finding the shortest (min-cost) path in a graph is a 
problem that occurs often
● Find the least-cost route between Ithaca and Detroit
● Result depend on our notion of cost

▲ least mileage

▲ least time

▲ cheapest

▲ least boring

● All of these “costs” can be represented as edge 
costs on a graph

■ How do we find a shortest path?
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Shortest Paths for Unweighted Graphs

bfsDistance(s):

// s is the start vertex
// dist[v] is length of s-to-v path

// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {

v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}
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Analysis for bfsDistance

■ How many times can a 
vertex be placed in the 
queue?

■ How much time for the for-
loop?

● Depends on 
representation

▲ Adjacency Matrix: O(v)

▲ Adjacency List: O(ev)

■ Time:

● O(v2) for adj matrix
● O(e+v) for adj list

bfsDistance(s):

// s is the start vertex
// dist[v] is length of s-to-v path

// Initially dist[v] = ∞ for all v
dist[s] = 0;
Q.insert(s);

while (Q nonempty) {

v = Q.get();
for (each w adjacent to v) {

if (dist[w] == ∞) {
dist[w] = dist[v]+1;
Q.insert(w);

}
}

}
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If There are Edge Costs?

■ Idea #1
● Add false nodes so that 

all edge costs are 1
● But what if edge costs 

are large?
● What if the costs aren’t 

integers?

■ Idea #2
● Nothing “interesting” 

happens at the false 
nodes

● Can’t we just jump 
ahead to the next “real” 
node

● Rule: always do the 
closest (real) node first

● Use the array dist[ ] to 
▲ Report answers

▲ Keep track of what to 
do next
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Dijkstra’s Algorithm

■ Intuition

● Edges are threads; vertices 
are beads

● Pick up at s; mark each node 
as it leave the table

■ Note: Negative edge-costs are 
not allowed

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with 

smallest dist;
Mark v;
for (each w adj to v) {

dist[w] = min
[ dist[w], dist[v] + c(v,w) ];

}
}
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Dijkstra’s Algorithm using Adj Matrix

■ While-loop is done v 
times

■ Within the loop
● Choosing v takes O(v) 

time

● For-loop takes O(v) time

■ Total time = O(v2)

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with 

smallest dist;
Mark v;
for (each w adj to v) {

dist[w] = min
[ dist[w], dist[v] + c(v,w) ];

}
}
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Dijkstra’s Algorithm using Adj List

■ Looks like we need a PQ

● Problem: priorities are 
updated as algorithm runs

● Can insert pair (v,dist[v]) in 
PQ whenever dist[v] is 
updated

● At most e things in PQ

■ Time O(v + e log e)

■ Using a more complicated PQ 
(e.g., Pairing Heap), time can 
be brought down to 
O(e + v log v)

● s is the start vertex

● c(i,j) is the cost from i to j
● Initially, vertices are unmarked
● dist[v] is length of s-to-v path

● Initially, dist[v] = ∞, for all v

dijsktra(s):
dist[s] = 0;

while (some vertices are unmarked) {
v = unmarked vertex with 

smallest dist;
Mark v;
for (each w adj to v) {

dist[w] = min
[ dist[w], dist[v] + c(v,w) ];

}
}


