Graph Algorithms: Shortest Paths	
	CS211

Sorting in Linear Time	
There are several sorting methods that take linear time - Counting Sort - sorts integers from a small range: [0..k] where $\mathrm{k}=\mathrm{O}(\mathrm{n})$ - Radix Sort - the method used by the old card-sorters - sorting time O(dn) where d is the number of "digits"	How do these methods get around the $\Omega(\mathrm{n} \log \mathrm{n})$ lower bound? - They don't use comparisons What sorting method works best? - QuickSort is best general-purpose sort - Counting Sort or Radix Sort can be best for some kinds of data

Shortest Paths for Unweighted Graphs

Dijkstra's Algorithm	
Intuition - Edges are threads; vertices are beads - Pick up at s; mark each node - s is the start vertex - $c(i, j)$ is the cost from i to j - Initially, vertices are unmark - dist $[v]$ is length of $s-t o-v$ pat	
- Note: Negative edge-costs are not allowed dijsktra(s): dist[s] $=0$; while (some vertices are unmarked) $\{$	
Mark v; for (each wadj to v) \{ dist $[\mathrm{w}]=\min$	
\}	

Dijkstra's Algorithm using Adj Matrix

Dijkstra's Algorithm using Adj List

- Looks like we need a PQ
- Problem: priorities are updated as algorithm runs
- Can insert pair (v, dist[v]) in $P Q$ whenever dist[v] is updated
- At most e things in PQ
- Time $O(v+e \log e)$

■ Using a more complicated PQ (e.g., Pairing Heap), time can be brought down to $O(e+v \log v)$

- s is the start vertex
- $c(i, j)$ is the cost from i to j
- Initially, vertices are unmarked
- dist $[v]$ is length of $s-t o-v$ path
- Initially, dist[$[\mathrm{v}]=\infty$, for all v
dijsktra(s):
$\operatorname{dist}[\mathrm{s}]=0$;
while (some vertices are unmarked) $\{$
$\mathrm{v}=$ unmarked vertex with smallest dist;
Mark v;
for (each w adj to v) \{
$\operatorname{dist}[w]=\min$ [dist[w], dist[v$]+\mathrm{c}(\mathrm{v}, \mathrm{w})$];
\}
, \}
\}

