Insertion Sort

- Corresponds to how most people sort cards
- Invariant: everything to left is already sorted
- Works especially well when input is nearly sorted
- Runtime
 - Worst-case: $O(n^2)$
 - Consider reverse-sorted input
 - Best-case: $O(n)$
 - Consider sorted input

```java
// Code for sorting an array of int
for (int i = 1; i < a.length; i++) {
    int temp = a[i];
    int k = i;
    for (; k > 0 && a[k-1] > temp; k--)
        a[k] = a[k-1];
    a[k] = temp;
}
```

Merge Sort

- Uses recursion (Divide & Conquer)
- Outline (text has detailed code)
 - Split array into two halves
 - Recursively sort each half
 - Merge the two halves
- Merge = combine two sorted arrays to make a single sorted array
 - Rule: Always choose the smallest item
 - Time: $O(n)$
- Runtime recurrence
 - Let $T(n)$ be the time to sort an array of size n
 - $T(n) = 2T(n/2) + O(n)$
 - $T(1) = O(1)$
 - Can show by induction that $T(n) = O(n \log n)$
- Alternately, can show $T(n) = O(n \log n)$ by looking at tree of recursive calls

Quick Sort

- Also uses recursion (Divide & Conquer)
- Outline
 - Partition the array
 - Recursively sort each piece of the partition
 - Runtime = divide the array like this
 - p is the pivot item
 - Best pivot choices
 - middle item
 - random item
 - median of leftmost, rightmost, and middle items
- Partition can work badly producing this:
- Runtime recurrence
 - $T(n) = T(n-1) + O(n)$
- This can be solved by induction to show $T(n) = O(n^2)$
- Runtime analysis (expected-case)
 - More complex recurrence
 - Can solve by induction to show expected $T(n) = O(n \log n)$
 - Can improve constant factor by avoiding QuickSort on small sets

Heap Sort

- Not recursive
- Outline
 - Build heap
 - Perform removeMax on heap until empty
 - Note that items are removed from heap in sorted order
 - Heap Sort is the only $O(n \log n)$ sort that uses no extra space
 - Merge Sort uses extra array during merge
 - Quick Sort uses recursive stack
- Runtime analysis (worst-case)
 - $O(n)$ time to build heap (using bottom-up approach)
 - $O(\log n)$ time (worst-case) for each removal
 - Total time: $O(n \log n)$

Sorting Algorithm Summary

- The ones we have discussed
 - Insertion Sort
 - Merge Sort
 - Heap Sort
 - Other sorting algorithms
 - Selection Sort
 - Shell Sort (in text)
 - Bubble Sort
 - Radix Sort
 - Bin Sort
 - Counting Sort
- Why so many? Do Computer Scientists have some kind of sorting fetish or what?
 - Stable sorts: Ins, Mer
 - Worst-case $O(n \log n)$: Mer, Hea
 - Expected-case $O(n \log n)$: Mer, Hea, Qui
 - Best for nearly-sorted sets: Ins
 - No extra space needed: Ins, Hea
 - Fastest in practice: Qui
 - Least data movement: Sel
Lower Bounds on Sorting: Goals

- Goal: Determine the minimum time required to sort n items
- Note: we want worst-case not best-case time
 - Best-case doesn't tell us much; for example, we know Insertion Sort takes \(\Theta(n) \) time on already-sorted input
 - We want to determine the worst-case time for the best-possible algorithm
- But how can we prove anything about the best possible algorithm?
 - We want to find characteristics that are common to all sorting algorithms
 - Let's try looking at comparisons

Comparison Trees

- Any algorithm can be "unrolled" to show the comparisons that are (potentially) performed
 - Example for (int i = 0; i < x.length; i++)
 - if \(x[i] < 0 \) \(x[i] = -x[i]; \)
- In general, you get a comparison tree
 - If the algorithm fails to terminate for some input then the comparison tree is infinite
 - The height of the comparison tree represents the worst-case number of comparisons for that algorithm

Lower Bounds on Sorting: Notation

- Suppose we want to sort the items in the array \(B[\] \)
 - Let's name the items
 - \(a_1 \) is the item initially residing in \(B[1] \), \(a_2 \) is the item initially residing in \(B[2] \), etc.
 - In general, \(a_i \) is the item initially stored in \(B[i] \)
 - Rule: an item keeps its name forever, but it can change its location
 - Example: after swap(\(B, 1, 5 \)), \(a_1 \) is stored in \(B[5] \) and \(a_5 \) is stored in \(B[1] \)

The Answer to a Sorting Problem

- An answer for a sorting problem tells where each of the \(a_i \) resides when the algorithm finishes
- How many answers are possible?
 - The correct answer depends on the actual values represented by each \(a_i \)
 - Since we don't know what the \(a_i \) are going to be, it has to be possible to produce each permutation of the \(a_i \)
 - For a sorting algorithm to be valid it must be possible for that algorithm to give any of \(n! \) potential answers

Comparison Tree for Sorting

- Every sorting algorithm has a corresponding comparison tree
 - Note that other stuff happens during the sorting algorithm, we just aren't showing it in the tree
 - The comparison tree must have \(n! \) (or more) leaves because a valid sorting algorithm must be able to get any of \(n! \) possible answers

Time vs. Height

- The worst-case time for a sorting method must be \(\geq \) the height of its comparison tree
 - The height corresponds to the worst-case number of comparisons
 - Each comparison takes \(\Theta(1) \) time
 - The algorithm is doing more than just comparisons
- What is the minimum possible height for a binary tree with \(n! \) leaves?
 - Height \(\geq \log(n!) = \Theta(n \log n) \)
- This implies that any comparison-based sorting algorithm must have a worst-case time of \(\Theta(n \log n) \)
 - Note: this is a lower bound; thus, the use of big-Omega instead of big-O
Using the Lower Bound on Sorting

Claim: I have a PQ
- Insert time: $O(1)$
- GetMax time: $O(1)$
- True or false?

False (for general sets) because if such a PQ existed, it could be used to sort in time $O(n)$

Claim: I have a PQ
- Insert time: $O(\log \log n)$
- GetMax time: $O(\log \log n)$
- True or false?

False (for general sets) because it could be used to sort in time $O(n \log \log n)$
True for items with priorities in range $1..n$ [van Emde Boas]
(Note: such a set can be sorted in $O(n)$ time)

Sorting in Linear Time

There are several sorting methods that take linear time

- How do these methods get around the $\Omega(n \log n)$ lower bound?
- They don't use comparisons
- What sorting method works best?
- QuickSort is best general-purpose sort
- Counting Sort or Radix Sort can be best for some kinds of data

- Counting Sort
 - sorts integers from a small range: $[0..k]$ where $k = O(n)$
- Radix Sort
 - the method used by the old card-sorters
 - sorting time $O(dn)$ where d is the number of “digits”