BSTsand Baanced Trees

Quadratic Probing + Hashing Pitfalls

= Quadratic Probing
Similar to Linear
Probing in that data is
stored within the table
Probe at h(X), then at

h(X)+1

h(X)+4

h(X)+9

h(X)+ i2

Works well when
AA<0.5
a table size is prime

= Hash Table Pitfalls

« Good hash function is
required

« Watch the load factor
(M), especially for Linear
& Quadratic Probing

CS211
Fall 2000
Dictionary Implementations
= Ordered Array = Goal: Want Binary Search,

but can't afford inefficiency
of ordered array

« Better than unordered
array because Binary

Deleting from a BST

Cases:
n Delete a leaf
. easy
= Delete a node with just one
child

« delete and replace with
child
= Delete a node with two
children

How do we find the
successor?

The successor always has
at most one child. Why?

Would work just as well
using predecessor instead

Search can be used = |dea: Use a Binary Search
= Unordered Linked-List Tree (BST)
« Ordering doesn't help
= Direct Address Table = BST Property:
« Small universe [
limited usage °

= Hashtables

« O(1) expected time for
Dictionary operations

JENEN

« delete node’s successor of successor

« write successor’s data
into node

BST Performance

Time for put(), get(),
update(), remove() is O(h)
where h is the height of the
tree

= How bad can h be?

= Operations are fast if tree
is balanced

= How balanced is a random

tree?

« If items are inserted in
random order then the
expected height of a
BST is O(log n) where n
is the number of items

= [f deletion is allowed

. Treeis no longer
random

« Treeis likely to become
unbalanced

Analysis Sketch for Random BST

= Only the number of items and their order is important
« Can restrict our attention to BSTs containing items
{1,...,n}
= We assume that each item is equally likely to appear as the
root
= Define H(n) = expected height of BST of size n
= If item i is the root then expected height is
1 + max { H(i-1), H(n-i) }
We average this over all possible i
= Can solve the resulting recurrence (by induction)
H(n) = O(log n)




Why use a BST instead of a Hashtable?

= If we use a balanced BST = Note that balanced BST

scheme then we achieve schemes can be difficult to
guaranteed worst-case time implement
bounds . But there are lots of

= There are some operations reliable codes for these
that can be efficient on BSTs, schemes available on
but very inefficient on the Web
Hashtables . Javal.2includes a

report-elements-in-order balanced BST scheme

getMin among its standard

getMax packages

select(k) // find the k-th element (java.util. TreeMap and
(maintain size of each subtree java.util. TreeSet)

by using an additional size
field in each node)

Example Balancing Scheme: 234-Trees

= Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)
= Allleaves are at the same level
= Basic rule for insertion: We hate 4-nodes

« Split a 4-node whenever you find one while coming down the tree
« Note: this requires that parent is not a 4-node
= Delete is harder than insert
« For delete, we hate 2-nodes
« Asin BSTs, cannot delete from a nonleaf so we use same BST trick:
delete successor and recopy its data

Splitting a 4-node E — Place in
e,

° G parent
- ! ! ~ AN

234-Tree Anaysis

= Time for insert or get is Analysis of tree height:

proportional to tree’s height = Let N be the number of nodes, n
be the number of items, and h be

= How big is tree’s height h? the height
= Let n be the number of = Define h so that a tree consisting
nodes in the tree of a single node is height 0

It's easy to see 1+2+4+..+2"< N

« nis large if all nodes are
< 1+4+16+...+40

4-nodes = It'salsoeasytoseeN<n<3N
« nis smallif all nodes = Using the above, we have n 2
are 2-nodes 14244+, +2h = 2h+l]
= Can use this to show = Rewriting, we have h <log(n+1) -
h= O(Iog n) 1 or h = 0O(log n)

= Thus, Dictionary operations on
234-trees take time O(log n) in
the worst case

234-Tree Implementation

= Can implement all nodes as 4-nodes
« Wasted space

= Can allow various node sizes

« Requires recopying of data whenever a node
changes size

Can use BST nodes to emulate 2-, 3-, or 4-nodes

Using BSTsto Emulate 234-Trees

= A 2-node can be

e represented with a
oo standard BST node

= A 4-node can be
represented with three BST

nodes
o = A 3-node can be
3-node e ° represented with two BST
\ nodes (in two different
ways)

Red-Black Trees

= We need a way to tell when = Result:
an emulated 234-node « one black node per 234-
starts and ends node

= We mark the nodes Number of black nodes on

- » _ path from root to leaf is
+ Black: "root” of 234 same as height of 234-tree

node
« All paths from root to leaf
+ Red: belongs to parent have same number of
« Requires one bit per black nodes
node « On any path: at most one

= 234-tree rules become red node per black node
rules for rotations and color Thus tree height for red-
changes in red-black trees black tree is O(log n)




Balanced Tree Schemes

= AVL trees [1962]
« named for initials of
Russian creators
« uses rotations to ensure
heights of child trees
differ by at most 1
= 23-Trees [Hopcroft 1970]
« similar to 234-tree, but
repairs have to move
back up the tree
= B-Trees [Bayer &
McCreight 1972]

= Red-Black Trees [Bayer
1972]

« not the original name
= Red-black convention &
relation to 234-trees
[Guibas & Stolfi 1978]

= Splay Trees [Sleator &
Tarjan 1983]

= Skip Lists [Pugh 1990]
. developed at Cornell

Selecting a Dictionary Scheme

= Use an unordered array for

small sets (< 20 or so)

= Use a Hash Table if possible

« Cannot efficiently do some
ops that are easy with
BSTs

Running times are
expected rather than
worst-case

= Use an ordered array if few

changes after initialization
= B-Trees are best for large
data sets, external storage

« Widely used within data
base software

= Otherwise, Red-Black Trees
are current scheme of choice

= Skip Lists are supposed to be
easier to implement
« But shouldn’t have to
implement—use existing
code
= Splay trees are useful if some
items are accessed more
often than others
« But if you know which
items are most-commonly
accessed, use a separate
data structure

Selecting a Priority Queue Scheme

= Use an unordered array for
small sets (< 20 or so)
= Use a sorted array or
sorted linked list if few
insertions are expected
= Use an array of linked lists
if there are few priorities
« Each linked list is a
queue of equal-priority
items
« Very easy to implement
= Otherwise, use a Heap if
you can

= Heap + Hashtable
« Allow change-priority
operation to be done in
O(log n) expected time
= Balanced tree schemes
« Useful and practical
= There are a number of
alternate implementations
that allow additional
operations
« Fibonacci heaps
« Skew heaps

Topics Covered Since Last Exam

= Data structure building
blocks
« Arrays, Lists, Trees,
Graphs
= The Java Collections
Framework
« Interfaces: Set,
SortedSet, List, Map,
SortedMap, Iterator
Classes: HashSet,
TreeSet, ArrayList,
LinkedList, HashMap,
TreeMap
Utilities: java.util.Arrays,
java.util.Collections

= GUIs
« Layout
« Event handling

= Priority Queues
« Heaps
. BSTs, Balanced Trees
« Array of lists (index
value is priority)
= Dictionaries
. BSTs
. Balanced Trees
« Hash Tables




