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Quadratic Probing + Hashing Pitfalls

■ Quadratic Probing
● Similar to Linear 

Probing in that data is 
stored within the table

● Probe at h(X), then at
h(X)+1

h(X)+4

h(X)+9

…

h(X)+ i2

● Works well when
▲ λ < 0.5

▲ table size is prime

■ Hash Table Pitfalls

● Good hash function is 
required

● Watch the load factor 
(λ), especially for Linear 
& Quadratic Probing
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Dictionary Implementations

■ Ordered Array
● Better than unordered 

array because Binary 
Search can be used

■ Unordered Linked-List
● Ordering doesn’t help

■ Direct Address Table
● Small universe ⇒

limited usage
■ Hashtables

● O(1) expected time for 
Dictionary operations

■ Goal: Want Binary Search, 
but can’t afford inefficiency 
of ordered array

■ Idea: Use a Binary Search 
Tree (BST)

■ BST Property:

X

< X > X
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Deleting from a BST

Cases:
■ Delete a leaf 

● easy
■ Delete a node with just one 

child
● delete and replace with 

child
■ Delete a node with two 

children
● delete node’s successor

● write successor’s data 
into node

■ How do we find the 
successor?

■ The successor always has 
at most one child.  Why? 

■ Would work just as well 
using predecessor instead 
of successor
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BST Performance

■ Time for put(), get(), 
update(), remove() is O(h) 
where h is the height of the 
tree

■ How bad can h be?

■ Operations are fast if tree 
is balanced

■ How balanced is a random 
tree?

● If items are inserted in 
random order then the 
expected height of a 
BST is O(log n) where n
is the number of items

■ If deletion is allowed
● Tree is no longer 

random

● Tree is likely to become 
unbalanced
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Analysis Sketch for Random BST

■ Only the number of items and their order is important
● Can restrict our attention to BSTs containing items 

{1,…, n}
■ We assume that each item is equally likely to appear as the 

root
■ Define H(n) ≡ expected height of BST of size n
■ If item i is the root then expected height is

1 + max { H(i-1), H(n-i) }
We average this over all possible i

■ Can solve the resulting recurrence (by induction)
H(n) = O(log n)
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Why use a BST instead of a Hashtable?

■ If we use a balanced BST 
scheme then we achieve 
guaranteed worst-case time 
bounds

■ There are some operations 
that can be efficient on BSTs, 
but very inefficient on 
Hashtables
report-elements-in-order 

getMin

getMax

select(k) // find the k-th element
(maintain size of each subtree 

by using an additional size
field in each node)

■ Note that balanced BST 
schemes can be difficult to 
implement

● But there are lots of 
reliable codes for these 
schemes available on 
the Web

● Java 1.2 includes a 
balanced BST scheme 
among its standard 
packages 
(java.util.TreeMap and 
java.util.TreeSet)
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Example Balancing Scheme: 234-Trees
■ Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively) 

■ All leaves are at the same level

■ Basic rule for insertion: We hate 4-nodes

● Split a 4-node whenever you find one while coming down the tree

● Note: this requires that parent is not a 4-node

■ Delete is harder than insert

● For delete, we hate 2-nodes

● As in BSTs, cannot delete from a nonleaf so we use same BST trick: 
delete successor and recopy its data

B

A C

Place in
parent

A    B    C

Splitting a 4-node
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234-Tree Analysis

■ Time for insert or get is 
proportional to tree’s height 

■ How big is tree’s height h?
■ Let n be the number of 

nodes in the tree
● n is large if all nodes are 

4-nodes
● n is small if all nodes 

are 2-nodes
■ Can use this to show

h = O(log n)

Analysis of tree height:

■ Let N be the number of nodes, n
be the number of items, and h be 
the height 

■ Define h so that a tree consisting 
of a single node is height 0

■ It’s easy to see 1+2+4+…+2h ≤ N 
≤ 1+4+16+…+4h

■ It’s also easy to see N ≤ n ≤ 3N

■ Using the above, we have n ≥
1+2+4+…+2h = 2h+1-1

■ Rewriting, we have h ≤ log(n+1) -
1 or h = O(log n)

■ Thus, Dictionary operations on 
234-trees take time O(log n) in 
the worst case

10

234-Tree Implementation

■ Can implement all nodes as 4-nodes

● Wasted space

■ Can allow various node sizes

● Requires recopying of data whenever a node 
changes size

■ Can use BST nodes to emulate 2-, 3-, or 4-nodes
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Using BSTs to Emulate 234-Trees

A    B    C

CA

B

■ A 2-node can be 
represented with a 
standard BST node

■ A 4-node can be 
represented with three BST 
nodes

■ A 3-node can be 
represented with two BST 
nodes (in two different 
ways)

4-node

A

B

B

A3-node

or
A    B
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Red-Black Trees

■ We need a way to tell when 
an emulated 234-node 
starts and ends

■ We mark the nodes
● Black: “root” of 234-

node
● Red: belongs to parent
● Requires one bit per 

node
■ 234-tree rules become 

rules for rotations and color 
changes in red-black trees

■ Result:

● one black node per 234-
node

● Number of black nodes on 
path from root to leaf is 
same as height of 234-tree

● All paths from root to leaf 
have same number of 
black nodes

● On any path: at most one 
red node per black node

● Thus tree height for red-
black tree is O(log n)
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Balanced Tree Schemes

■ AVL trees [1962]
● named for initials of 

Russian creators
● uses rotations to ensure 

heights of child trees 
differ by at most 1

■ 23-Trees [Hopcroft 1970]
● similar to 234-tree, but 

repairs have to move 
back up the tree

■ B-Trees [Bayer & 
McCreight 1972]

■ Red-Black Trees [Bayer 
1972]

● not the original name 
■ Red-black convention & 

relation to 234-trees 
[Guibas & Stolfi 1978]

■ Splay Trees [Sleator & 
Tarjan 1983]

■ Skip Lists [Pugh 1990]

● developed at Cornell
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Selecting a Dictionary Scheme

■ Use an unordered array for 
small sets (< 20 or so)

■ Use a Hash Table if possible

● Cannot efficiently do some 
ops that are easy with 
BSTs

● Running times are 
expected rather than 
worst-case

■ Use an ordered array if few 
changes after initialization

■ B-Trees are best for large 
data sets, external storage

● Widely used within data 
base software

■ Otherwise, Red-Black Trees 
are current scheme of choice

■ Skip Lists are supposed to be 
easier to implement

● But shouldn’t have to 
implement—use existing 
code

■ Splay trees are useful if some 
items are accessed more 
often than others

● But if you know which 
items are most-commonly 
accessed, use a separate 
data structure
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Selecting a Priority Queue Scheme

■ Use an unordered array for 
small sets (< 20 or so)

■ Use a sorted array or 
sorted linked list if few 
insertions are expected

■ Use an array of linked lists 
if there are few priorities

● Each linked list is a 
queue of equal-priority 
items

● Very easy to implement
■ Otherwise, use a Heap if 

you can

■ Heap + Hashtable
● Allow change-priority

operation to be done in 
O(log n) expected time

■ Balanced tree schemes 
● Useful and practical

■ There are a number of 
alternate implementations 
that allow additional 
operations

● Fibonacci heaps
● Skew heaps
● …
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Topics Covered Since Last Exam
■ Data structure building 

blocks
● Arrays, Lists, Trees, 

Graphs
■ The Java Collections 

Framework
● Interfaces: Set, 

SortedSet, List, Map, 
SortedMap, Iterator

● Classes: HashSet, 
TreeSet, ArrayList, 
LinkedList, HashMap, 
TreeMap

● Utilities: java.util.Arrays, 
java.util.Collections

■ GUIs
● Layout
● Event handling

■ Priority Queues
● Heaps
● BSTs, Balanced Trees

● Array of lists (index 
value is priority)

■ Dictionaries
● BSTs
● Balanced Trees
● Hash Tables


