
1

BSTs and Balanced Trees

CS211

Fall 2000

2

Quadratic Probing + Hashing Pitfalls

■ Quadratic Probing
● Similar to Linear

Probing in that data is
stored within the table

● Probe at h(X), then at
h(X)+1

h(X)+4

h(X)+9

…

h(X)+ i2

● Works well when
▲ λ < 0.5

▲ table size is prime

■ Hash Table Pitfalls

● Good hash function is
required

● Watch the load factor
(λ), especially for Linear
& Quadratic Probing

3

Dictionary Implementations

■ Ordered Array
● Better than unordered

array because Binary
Search can be used

■ Unordered Linked-List
● Ordering doesn’t help

■ Direct Address Table
● Small universe ⇒

limited usage
■ Hashtables

● O(1) expected time for
Dictionary operations

■ Goal: Want Binary Search,
but can’t afford inefficiency
of ordered array

■ Idea: Use a Binary Search
Tree (BST)

■ BST Property:

X

< X > X

4

Deleting from a BST

Cases:
■ Delete a leaf

● easy
■ Delete a node with just one

child
● delete and replace with

child
■ Delete a node with two

children
● delete node’s successor

● write successor’s data
into node

■ How do we find the
successor?

■ The successor always has
at most one child. Why?

■ Would work just as well
using predecessor instead
of successor

5

BST Performance

■ Time for put(), get(),
update(), remove() is O(h)
where h is the height of the
tree

■ How bad can h be?

■ Operations are fast if tree
is balanced

■ How balanced is a random
tree?

● If items are inserted in
random order then the
expected height of a
BST is O(log n) where n
is the number of items

■ If deletion is allowed
● Tree is no longer

random

● Tree is likely to become
unbalanced

6

Analysis Sketch for Random BST

■ Only the number of items and their order is important
● Can restrict our attention to BSTs containing items

{1,…, n}
■ We assume that each item is equally likely to appear as the

root
■ Define H(n) ≡ expected height of BST of size n
■ If item i is the root then expected height is

1 + max { H(i-1), H(n-i) }
We average this over all possible i

■ Can solve the resulting recurrence (by induction)
H(n) = O(log n)

2

7

Why use a BST instead of a Hashtable?

■ If we use a balanced BST
scheme then we achieve
guaranteed worst-case time
bounds

■ There are some operations
that can be efficient on BSTs,
but very inefficient on
Hashtables
report-elements-in-order

getMin

getMax

select(k) // find the k-th element
(maintain size of each subtree

by using an additional size
field in each node)

■ Note that balanced BST
schemes can be difficult to
implement

● But there are lots of
reliable codes for these
schemes available on
the Web

● Java 1.2 includes a
balanced BST scheme
among its standard
packages
(java.util.TreeMap and
java.util.TreeSet)

8

Example Balancing Scheme: 234-Trees
■ Nodes have 2, 3, or 4 children (and contain 1, 2, or 3 keys, respectively)

■ All leaves are at the same level

■ Basic rule for insertion: We hate 4-nodes

● Split a 4-node whenever you find one while coming down the tree

● Note: this requires that parent is not a 4-node

■ Delete is harder than insert

● For delete, we hate 2-nodes

● As in BSTs, cannot delete from a nonleaf so we use same BST trick:
delete successor and recopy its data

B

A C

Place in
parent

A B C

Splitting a 4-node

9

234-Tree Analysis

■ Time for insert or get is
proportional to tree’s height

■ How big is tree’s height h?
■ Let n be the number of

nodes in the tree
● n is large if all nodes are

4-nodes
● n is small if all nodes

are 2-nodes
■ Can use this to show

h = O(log n)

Analysis of tree height:

■ Let N be the number of nodes, n
be the number of items, and h be
the height

■ Define h so that a tree consisting
of a single node is height 0

■ It’s easy to see 1+2+4+…+2h ≤ N
≤ 1+4+16+…+4h

■ It’s also easy to see N ≤ n ≤ 3N

■ Using the above, we have n ≥
1+2+4+…+2h = 2h+1-1

■ Rewriting, we have h ≤ log(n+1) -
1 or h = O(log n)

■ Thus, Dictionary operations on
234-trees take time O(log n) in
the worst case

10

234-Tree Implementation

■ Can implement all nodes as 4-nodes

● Wasted space

■ Can allow various node sizes

● Requires recopying of data whenever a node
changes size

■ Can use BST nodes to emulate 2-, 3-, or 4-nodes

11

Using BSTs to Emulate 234-Trees

A B C

CA

B

■ A 2-node can be
represented with a
standard BST node

■ A 4-node can be
represented with three BST
nodes

■ A 3-node can be
represented with two BST
nodes (in two different
ways)

4-node

A

B

B

A3-node

or
A B

12

Red-Black Trees

■ We need a way to tell when
an emulated 234-node
starts and ends

■ We mark the nodes
● Black: “root” of 234-

node
● Red: belongs to parent
● Requires one bit per

node
■ 234-tree rules become

rules for rotations and color
changes in red-black trees

■ Result:

● one black node per 234-
node

● Number of black nodes on
path from root to leaf is
same as height of 234-tree

● All paths from root to leaf
have same number of
black nodes

● On any path: at most one
red node per black node

● Thus tree height for red-
black tree is O(log n)

3

13

Balanced Tree Schemes

■ AVL trees [1962]
● named for initials of

Russian creators
● uses rotations to ensure

heights of child trees
differ by at most 1

■ 23-Trees [Hopcroft 1970]
● similar to 234-tree, but

repairs have to move
back up the tree

■ B-Trees [Bayer &
McCreight 1972]

■ Red-Black Trees [Bayer
1972]

● not the original name
■ Red-black convention &

relation to 234-trees
[Guibas & Stolfi 1978]

■ Splay Trees [Sleator &
Tarjan 1983]

■ Skip Lists [Pugh 1990]

● developed at Cornell

14

Selecting a Dictionary Scheme

■ Use an unordered array for
small sets (< 20 or so)

■ Use a Hash Table if possible

● Cannot efficiently do some
ops that are easy with
BSTs

● Running times are
expected rather than
worst-case

■ Use an ordered array if few
changes after initialization

■ B-Trees are best for large
data sets, external storage

● Widely used within data
base software

■ Otherwise, Red-Black Trees
are current scheme of choice

■ Skip Lists are supposed to be
easier to implement

● But shouldn’t have to
implement—use existing
code

■ Splay trees are useful if some
items are accessed more
often than others

● But if you know which
items are most-commonly
accessed, use a separate
data structure

15

Selecting a Priority Queue Scheme

■ Use an unordered array for
small sets (< 20 or so)

■ Use a sorted array or
sorted linked list if few
insertions are expected

■ Use an array of linked lists
if there are few priorities

● Each linked list is a
queue of equal-priority
items

● Very easy to implement
■ Otherwise, use a Heap if

you can

■ Heap + Hashtable
● Allow change-priority

operation to be done in
O(log n) expected time

■ Balanced tree schemes
● Useful and practical

■ There are a number of
alternate implementations
that allow additional
operations

● Fibonacci heaps
● Skew heaps
● …

16

Topics Covered Since Last Exam
■ Data structure building

blocks
● Arrays, Lists, Trees,

Graphs
■ The Java Collections

Framework
● Interfaces: Set,

SortedSet, List, Map,
SortedMap, Iterator

● Classes: HashSet,
TreeSet, ArrayList,
LinkedList, HashMap,
TreeMap

● Utilities: java.util.Arrays,
java.util.Collections

■ GUIs
● Layout
● Event handling

■ Priority Queues
● Heaps
● BSTs, Balanced Trees

● Array of lists (index
value is priority)

■ Dictionaries
● BSTs
● Balanced Trees
● Hash Tables

