
1

Hash Tables

CS211

Fall 2000

2

Goal: Design a Dictionary

■ Operations
● void insert (key,value)
● void remove (key)
● Object get (key)

Array implementation:
Uses an array of
(key,value) pairs

Unsorted Sorted
insert O(1) O(n)
remove O(n) O(n)
get O(n) O(log n)

n is the number of items
currently held in the array

3

Direct Address Table

■ An easy version of a Hash Table

■ Assumes the key set is from a small Universe
■ Example: Addresses on my street

● Start at 1, go to 40

● A few lots don’t have houses
■ For a Direct Address Table, we make an array as

large as the Universe
■ To find an entry, we just index to that entry of the

array

■ Dictionary operations all take O(1) time

4

What if the Universe is large?

■ Idea is to re-use table
entries via a hash function
h

■ h: U → [0,…,m-1]
where m = table size

■ h must
● Be easy to compute
● Cause few collisions

● Have equal probability
for each table position

Typical situation:
U = all legal identifiers

Typical hash function:
h converts each letter to a

number and we
compute a function of
these numbers

5

A Hashing Example

■ Suppose each word below
has the following
hashCode

jan 7

feb 0

mar 5

apr 2

may 4

jun 7

jul 3

aug 7

sep 2

oct 5

■ How do we resolve
collisions?

■ We’ll use chaining: each
table position is the head of
a list

■ For any particular problem,
this might work terribly

■ In practice, using a good
hash function, we can
assume each position is
equally likely

6

Analysis for Hashing with Chaining

■ Analyzed in terms of load
factor λ = n/m =
(items in table)/(table size)

■ We count the expected
number of probes (key
comparisons)

■ Goal: Determine U =
number of probes for an
unsuccessful search

■ Claim U is the same as the
average number of items
per table position = n/m = λ

■ Now we want to determine
S = number of probes for a
successful search (shown
on blackboard)

2

7

Table Doubling

We know each operation
takes time O(λ) where
λ=n/m

But isn’t λ = Θ(n)?

What’s the deal here?
It’s still linear time!

Table Doubling:

■ Set a bound for λ (call it λ0)

■ Whenever λ reaches this
bound we

● Create a new table,
twice as big and

● Re-insert all the data

■ Easy to see operations
usually take time O(1)

8

Analysis of Table Doubling

■ Suppose we
reach a state
with n items in a
table of size m
and that we
have just
completed a
table doubling

Copying Work

Everything has just
been copied

n inserts

Half were copied
previously

n/2 inserts

Half of those were
copied previously

n/4 inserts

… …
Total work n + n/2 + n/4 + … = 2n

9

Analysis of Table Doubling, Cont’d

■ Total number of insert
operations needed to reach
current table = copying
work + initial insertions of
items
= 2n + n = 3n inserts

■ Each insert takes expected
time O(λ0) or O(1), so total
expected time to build
entire table is O(n)

■ Thus, expected time per
operation is O(1)

■ Disadvantages of table
doubling:

● Worst-case insertion
time of O(n) is definitely
achieved (but rarely)

● Thus, not appropriate
for time critical
operations

10

Java Hash Functions

■ Most Java classes
implement the hashCode()
method

■ hashCode() returns an int

■ Java’s HashMap class uses
h(X) = X.hashCode() mod m

■ h(X) in detail:
int hash = X.hashCode();
int index = (hash & 0x7FFFFFFF) % m;

What hashCode() returns:
Integer: uses the int value
Float: converts to a bit

representation and
treats it as an int

Short Strings:
37∗ previous + value of
next character

Long Strings: sample of 8
characters; 39∗ previous
+ next value

11

Hash Tables in Java

java.util.HashMap
java.util.HashSet
java.util.Hashtable (legacy)

■ Use chaining

■ Initial (default) size = 101

■ Load factor = λ0 = 0.75

■ Uses table doubling
(2∗ previous+1)

A node in the chain looks like
this:

hashCode key value next

original hashCode (before mod m)
[Allows faster rehashing and
(possibly) faster key comparison]

12

Hashing Application: Spell Checking

■ We want to create a “spelling dictionary” containing 10,000
words

● A spelling query should be fast
● Should return true iff word is contained in dictionary

■ Basic idea:
● Use a Hashtable consisting only of bits (say 100K bytes

or about 800,000 bits)
● Compute a hash value for each word and turn on the

corresponding bit in the table
● What’s the probability of a false positive? (It’s too high!)

● Fix: Use more hash functions

