
1

Recursion andRecursion and
Recursive Descent ParsingRecursive Descent Parsing

CS211
Fall 2000

2

Divide & Conquer OutlineDivide & Conquer Outline
■ D & C Outline

public Solution DaC (Problem P) {
if (P is small)

return solution for P;
Break P into parts P1 and P2;
DaC(P1); DaC(P2);
Use the solutions for P1 and P2

to produce a solution for P;
return solution for P;
}

■ QuickSort

private static void quickSort
(int[] A, int low, int high) {

if (low < high) {
int p = partition(A,low,high);
quickSort(A,low,p – 1);
quickSort(A,p,high);
}

}

3

Recursion vs. InductionRecursion vs. Induction
Lemma 1 The partition method splits

A[low..high] into two groups:
those ≤ the pivot and those ≥ the
pivot.

Proof Based on the invariant:
A[low..i–1] ≤ pivot &
A[j+1..high] ≥ pivot

Theorem QuickSort correctly sorts
any array of int.

Proof By Lemma 2 it works correctly
on the subarray from 0 to
length-1 (which is the entire
array).

Lemma 2 QuickSort correctly sorts
any subarray of int.

Proof
Basis: It works correctly on a

subarray of size 1.
Induction Hypothesis: It works

correctly on a subarray of
size k<n.

For a subarray of size n, partition
works (by Lemma 1) and splits
the subarray into two smaller
pieces. By the induction
hypothesis these pieces are
sorted correctly. These smaller
pieces are in the correct order in
relation to each other, so the
subarray of size n is correctly
sorted.

4

A Parsing ExampleA Parsing Example
■ The goal is to parse (and

evaluate) a simple boolean
expression (BE)

■ (Recursive) Definition:
● The constants T and F

are BEs
● If E is a BE then !E is a

BE
● If E and F are BEs then

so are (E & F), (E | F),
and (E = F)

■ BE Examples
● !(T=F)
● (!F & !T)
● ((F & !F) & F)
● (F | !(T & F))

■ HW3 is a similar task

5

Lexical AnalysisLexical Analysis
■ We assume that we have a

lexical analyzer
● A lexical analyzer (or

tokenizer) divides the
input stream into tokens

■ The tokenizer has the
following methods
nextToken(): return the

next token from input
pushBack(): push a token

back so it can be
retrieved again by
nextToken()

■ A token is a single, simple
unit of a language

■ In Java, tokens are
keywords (e.g., this, null,

if, while),
identifiers (e.g., i, count),
numbers (e.g., 0, 1.5,

6.02e23),
strings,
operators (e.g., +, <=, !=),
…

■ For our example, a token is
a single (nonblank) char

6

A Recursive Descent BE EvaluatorA Recursive Descent BE Evaluator
class BooleanExp {

Tokenizer in;

public BooleanExp (String input) {
in = new Tokenizer(input);
}

public boolean evaluate () {
boolean answer = be();
if (in.hasMoreTokens()) error;
return answer;
}

public boolean be () {
char ch = in.nextToken();
if (ch == 'T') return true;
if (ch == 'F') return false;
if (ch == '!') return !be();
if (ch == '(') {

boolean left = be();
char op = in.nextToken();
boolean right = be();
if (in.nextToken() != ')') error;
if (op == '&') return left & right;
if (op == '|') return left | right;
if (op == '=') return left == right;
error;
}

error;
}}

2

7

Errors While ParsingErrors While Parsing
■ Desired responses to

a parsing error
● Produce error

message
● Recover and

continue parsing
■ Recovery depends on

finding an
“understandable”
token (e.g., “;” or “eol”)

■ Exceptions make it
easier to handle
parsing errors

if (ch == '(') {
boolean left = be();
char op = in.nextToken();
boolean right = be();
if (in.nextToken() != ')') throw new

IllegalArgumentException(“Missing ‘)’”);
if (op == '&') return left & right;
if (op == '|') return left | right;
if (op == '=') return left == right;
throw new

IllegalArgumentException(“Bad op”);
}

8

Catching the Parsing ExceptionsCatching the Parsing Exceptions
■ The try/catch

construction allows the
errors to be handled
without cluttering the
code

■ Without try/catch:
● Code has many

if/else branches
● What do you return

to indicate an error?

try {
BooleanExp b = new BooleanExp(string);
System.out.println (b + " is " + b.evaluate());
}

catch (NoSuchElementException e) {
System.out.println("Incomplete expr");
}

catch (IllegalArgumentException e) {
System.out.println(e.getMessage());
}

// For this example, NoSuchElementException
// is thrown by the Tokenizer when it
// unexpectedly runs out of tokens;
// IllegalArgumentException is thrown when an
// unexpected token occurs.

9

More Complicated ExpressionsMore Complicated Expressions
■ We haven’t used

pushBack(); is it really
needed?

■ Suppose we want more
realistic Boolean
Expressions

● T & (T|!F) & !F & (T|F)

We distinguish between
BTerms and BExps

■ The constants T and F are
BTerms

■ If S is a BTerm then so is
!S

■ If E is a BExp then (E) is a
BTerm

■ A BExp is one or more
BTerms separated by &, |,
or =

■ The operators &, |, and =
are left-associative

10

LeftLeft-- vs. Rightvs. Right-- AssociativityAssociativity
■ Many operators are

associative
● (5+3)+2 is the same as

5+(3+2)
● (5*3)*2 is the same as

5*(3*2)
■ Other operators are not

associative
● (5-3)-2 is different from

5-(3-2)
● (5/3)/2 is different from

5/(3/2)

■ A rule is needed for when
parentheses are not
present

● Left-associative implies
group starting from the
left {e.g., 5-3-2 is
treated as (5-3)-2}

● Right-associative
implies group starting
from the right {e.g.,
2^3^2 is treated as
2^(3^2)}

■ This is separate from any
precedence rules

11

Using Using pushBackpushBack()()
public boolean bexp () {

boolean result = bterm();
char ch = in.nextToken();
while (ch == '&' | ch == '|' | ch == '=') {

if (ch == '&') result = result & bterm();
if (ch == '|') result = result | bterm();
if (ch == '=') result = result == bterm();
ch = in.nextToken();
}

in.pushBack(); // Not an op so it's not ours
return result;
}

■ Parsing is easiest if
each routine is
carefully designed to
process only its own
tokens

■ Note that operations
are done from left-to-
right

