Obj ect-oriented Programming

Reference;

Chapter 6 of A Programmer’s Guide to Java Certification: A Comprehensive Primer.

—

CS211, Fall, 1999. KAM OOPfm

71

—

Overview

= The inheritance relationship: is-a

= The aggregation relationship: has-a

= Overridden and overloaded methods

« The keyword super

= Variable shadowing

= Constructors and constructor chaining using thisQ) and super()

= Single implementation inheritance, multiple interface inheritance
and supertypes

= Assigning, casting and passing references

= The instanceof operator

Polymorphism and dynamic method lookup
Encapsulation

Choosing between inheritance and aggregation

—

C211, Fall, 1999. KAM Object-oriented Programming

2/71

Extensibility by Linear Implementation Inheritance
< One fundamental mechanism for code reuse.

= The new class inherits all the members of the old class - not to be confused with
accessibility of superclass members.

= Aclass in Java can only extend one other class, i.e. it can only have one immediatdg
superclass.

= The superclass is specified using the extends clause in the header of the subclass.

= The definition of the subclass only specifies the additional new and modified mem-
bers in its class definition.

= All classes extend the java.lang.0Object class.

] [

C211, Fall, 1999. KAM Object-oriented Programming 3/71

—

Example 1 Extending Classes

class Light { /7 (1)

// Instance variables
private int noOfWatts; // wattage
private boolean indicator; // on or off
private String location; // placement
// Static variable
private static int counter; // no. of Light objects created
// Constructor
LightQ {

noOfWatts = 50;

indicator = true;

location = new String("'X");

}

// Instance methods

public void switchOn() { indicator = true; }
public void switchOff() { indicator = false; }
public boolean isOn() { return indicator; }

// Static methods
public static void writeCount() {
System.out._printin(*'Number of lights:

+ counter);

3
/...

] [

C211, Fall, 1999. KAM Object-oriented Programming 471

class TubeLight extends Light { /7 (2)
// lInstance variables
private int tubelength;
private int color;

// Instance method
public int getTubeLength() { return tubelLength; }
/...

] [

C211, Fall, 1999. KAM Object-oriented Programming 5/71

—

Implementation Inheritance Hierarchy L

< Inheritance defines the relationship is-a (also called superclass—subclass relation-
ship) between a superclass and its subclasses.

< Classes higher up in the hierarchy are more generalized, as they abstract the clasq
behavior.

= Classes lower down in the hierarchy are more specialized, as they customize thq
inherited behavior by additional properties and behavior.

= The object class is always the root of any inheritance hierarchy.

] [

C211, Fall, 1999. KAM Object-oriented Programming 6/71

jJava.lang.Object
|
Light

f

LightBulb TubeLight
\ |
SpotLightBulb NeonLight
Figure 1 Inheritance Hierarchy
ICSZJ'L, Fall, 1999. KAM Object-oriented Programming 7/71I_

—

—

Implications of Inheritance L
An object of a subclass can be used wherever an object of the superclass can be used.

An object of the TubeLight class can be used wherever an object of the superclass
Light can be used.

= An object of the TubeLight class is-a object of the superclass Light.

The inheritance relationship is transitive: if class B extends class A, then a class ¢
which extends class B, will also inherit from class A via class 8.

= An object of the spotLightBulb class is-a object of the class Light.

The is-a relationship does not hold between peer classes: an object of the LightBulyd
class is not an object of the class TubeLight, and vice versa.

Litmus test for using inheritance: if 8 is an A, then only let 8 inherit from A.
i.e. do not use inheritance unless all inherited behavior makes sense.

C211, Fall, 1999. KAM Object-oriented Programming 8/71

Aggregation
= A major mechanism for code reuse mechanism is aggregation.

= Aggregation defines the relationship has-a (a.k.a. whole—part relationship
between an instance of a class and its constituents (a.k.a. parts).

= InJava, an aggregate object cannot contain other objects.
= |t can only have references to its constituent objects.

= The has-a relationship defines an aggregation hierarchy.

< |n this simple form of aggregation, constituent objects can be shared between
objects, and their lifetimes are independent of the lifetime of the aggregate object.

] [

C211, Fall, 1999. KAM Object-oriented Programming 9/71

— L

[llustrating Inheritance

java.lang.Object

equals(Q
getClass()
notify()

Java.lang.String

equalsQ
substring()
lengthQ)

Figure 2 Inheritance Relationship between String and Object classes

] [

C211, Fall, 1999. KAM Object-oriented Programming 10/71

Example 2 lllustrating Inheritance

// String class is a subclass of Object class
class Client {
public static void main(String args[]) {

String stringRef = new String(‘'Java™); /7 (D)
System.out.printIn(*"(2): " + stringRef.getClass()); /7 (2)
System.out.printIn(*(3): " + stringRef.length()); /7 (3
Object objRef = stringRef; /7 (4
// System.out.printIn(""(5): " + objRef.length()); // (5) Not OK.
System.out.printIn(*'(6): " + objRef._equals('Java™)); // (6)
System.out.printIn(""'(7): " + objRef.getClass()); /7 (7)
stringRef = (String) objRef; /7 (8)

System.out.printIn(""(9): " + stringRef.equals("C++")); /7 (9)

}
Output from the program:

(2): class java.lang.String
3): 4

(6): true

(7): class java.lang.String
(9): false

] [

C211, Fall, 1999. KAM Object-oriented Programming /71

— L

= The subclass string inherits the method getclass() from the superclass object - thig
is immaterial for a client of class string

Inheriting from the Superclass

System.out.printIn(""(2): " + stringRef.getClass()); /7 (2)

Extending the Superclass

« The subclass string defines the method length(), which is not in the superclasg
Object, thereby extending the superclass.

System.out.printIn(*"(3): " + stringRef.length()); /7 (3)

Upcasting

= Asubclass reference can be assigned to a superclass reference, because a subclasg
object can be used where a superclass object can be used.

Object objRef = stringRef; // (4) creates aliases

< Methods exclusive to the string subclass cannot be invoked via the superclasg
reference:
System.out.printIn(**(6): " + objRef.length()); // (5) Not OK.

] [

C211, Fall, 1999. KAM Object-oriented Programming 12/71

Method Overriding

e The equals() method is redefined in the string class with the same signature (i.e
method name and parameters) and the same return type.

System.out.printIn(**(6): " + objRef.equals(*'Java™)); // (6)
= The compiler can check that the object class does define a method called equals().

Polymorphism and Dynamic Method Binding

The ability of a superclass reference to denote objects of its own class and its sub-
classes at runtime is called polymorphism.

The method invoked is dependent on the actual (type of) object denoted by the ref-
erence at runtime.

The actual method is determined by dynamic method lookup.
System.out.printIn(*"(6): " + objRef.equals(*'Java™)); // (6)
System.out.printIn(*"(7): " + objRef.getClass()); /7 (7)

At (6), dynamic method lookup results in the equals() method from the string clasq
being executed, and not the one in the object class.

] [

C211, Fall, 1999. KAM Object-oriented Programming 13/71

—I e At (7), dynamic method lookup determines that the method getClass(Q) inhéri'ren
from the object class to be executed - leading to a "search" up the inheritance hier
archy.

Downcasting

= Casting the value of a superclass reference to a subclass type is called downcasting
and requires explicit casting.

stringRef = (String) objRef; /7 (8)
System.out.printIn(’'(9): " + stringRef.equals('C++'")); // (9)

e The cast can be invalid at runtime!
e A ClassCastException would be thrown at runtime.
= Use the instanceof operator to determine the runtime type of an object beforg
any cast is applied.

if (objRef instanceof String) {
stringRef = (String) objRef;
System.out.printIn(*'(9): " + stringRef.length);

] [

C211, Fall, 1999. KAM Object-oriented Programming 14/71

—

if (a instanceof Sub) // tHere a is Sup rlef
Sub b = (Sub) a;

Sub isSup

Sup

Sup a =)b; // there b is Sub ref

Sub

C211, Fall, 1999. KAM Object-oriented Programming 15/71

—

—

Method Overriding L

A subclass may override non-static methods (non-private and non-final) inherited
from the superclass.

When the method is invoked on an object of the subclass, it is the new method
definition in the subclass that is executed.

The new method definition in the subclass must have the same method signatursg
(i.e. method name and parameters) and the same return type.

< The new method definition, in addition, cannot “narrow” the accessibility of
the method, but it can “widen” it.

= The new method definition in the subclass can only specify all or a subset of
the exception classes (including their subclasses) specified in the throws clausg
of the overridden method in the superclass.

A subclass can also use the keyword super to invoke the overridden method in the
superclass.

Any final, static and private methods in a class cannot be overridden but a sub-
class can redefine such methods although that would not be a good idea.

—

C211, Fall, 1999. KAM Object-oriented Programming 16/71

Example 3 Overriding and Overloading Methods and Shadowing Variables

// Exceptions

class InvalidHoursException extends Exception {}

class NegativeHoursException extends InvalidHoursException {}
class ZeroHoursException extends InvalidHoursException {}

class Light {

protected String billType = "Small bill"; /7 (1)
protected double getBill(int noOfHours)
throws InvalidHoursException { /7 (2)

double smallAmount = 10.0,

smallBill = smallAmount * noOfHours;
System.out.printin(billType + ": " + smallBill);
return smallBill;

}
}
class TubelLight extends Light {
public String billType = "Large bill"; // (3) Shadowing.
public double getBill(final int noOfHours)
throws ZeroHoursException { // (4) Overriding.
double largeAmount = 100.0,
largeBill = largeAmount * noOfHours;
System.out.printin(billType + ": " + largeBill);
return largeBill;
}

] [

C211, Fall, 1999. KAM Object-oriented Programming 17/71

System.out.printIn(*’"No bill™);
return 0.0;

}

public class Client {
public static void main(String args[])

throws InvalidHoursException { // (6)
TubeLight tubeLightRef = new TubeLight(); /7 (7)
Light lightRefl = tubelLightRef; /7 (8)
Light lightRef2 = new Light(); /7 (9)
// Invoke overridden methods
tubeLightRef._getBill(5); // (10)
lightRefl.getBill(5); // (1)
lightRef2.getBill(5); /7 (12)
// Access shadowed variables
System.out.printIn(tubeLightRef_billType); // (13)
System.out.printin(lightRefl.billType); // (14)
System.out.printin(lightRef2.billType); // (15)
// Invoke overloaded method
tubeLightRef.getBill(); // (16)

—I public double getBill() { // (5) I—

] [

C211, Fall, 1999. KAM Object-oriented Programming 18/71

Output from the program:

Large bill: 500.0
Large bill: 500.0
Small bill: 50.0
Large bill

Small bill

Small bill

No bill

] [

C211, Fall, 1999. KAM Object-oriented Programming 19/71

— Variable Shadowing L

= A subclass cannot override variable members of the superclass, but it can shadow
them.

« A subclass method can use the keyword super to access inherited members
including shadowed variables.

< When a method is invoked on an object using a reference, it is the class of the cur
rent object denoted by the reference, not the type of the reference, that determineg
which method implementation will be executed.

< When a variable of an object is accessed using a reference, it is the type of the refer
ence, not the class of the current object denoted by the reference, that determineg
which variable will actually be accessed.

] [

C211, Fall, 1999. KAM Object-oriented Programming 20/71

—

Overriding vs. Overloading

Method overriding requires the same method signature (name and parameters
and the same return type, and that the original method is inherited from its super
class.

Overloading requires different method signatures, but the method name should
be the same.

= To overload methods, the parameters must differ in type or number.

= The return type is not a part of the signature, changing it is not enough tg
overload methods.

A method can be overloaded in the class it is defined in, or in a subclass of itS
class.

Invoking an overridden method in the superclass from a subclass requires special
syntax (for example, the keyword super).

C211, Fall, 1999. KAM Object-oriented Programming 2171

—

—

Object Reference super L

The this reference is passed as an implicit parameter when an instance method i
invoked.

< It denotes the object on which the method is called.

The keyword super can be used in the body of an instance method in a subclass td
access variables and invoke methods inherited from the superclass.

= The keyword super provides a reference to the current object as an instance ol
its superclass.

The super.super.X construct is invalid.

C211, Fall, 1999. KAM Object-oriented Programming 22/71

Example 4 Using super Keyword

// Exceptions
class InvalidHoursException extends Exception {}

class ZeroHoursException extends InvalidHoursException {}
class Light {
protected String billType = "Small bill";

protected double getBill(int noOfHours)
throws InvalidHoursException {
double smallAmount = 10.0,
smallBill = smallAmount * noOfHours;
System.out.printin(billType + ": " + smallBill);
return smallBill;

}

public void banner() {
System.out.printIn('Let there be light!™);
}

—

class NegativeHoursException extends InvalidHoursException {}

/7 (D

/7 (2

/7 (3)

C211, Fall, 1999. KAM Object-oriented Programming

23/71

_I class TubeLight extends Light {
public String billType = "Large bill";

public double getBill(final int noOfHours)
throws ZeroHoursException {
double largeAmount = 100.0,
largeBill = largeAmount * noOfHours;
System.out.printin(billType + ": " + largeBill);
return largeBill;

}

public double getBill() {
System.out.printIn(*’*No bill"™);

return 0.0;
}
}
class NeonLight extends TubeLight {
// ...
public void demonstrate()
throws InvalidHoursException {
super.banner();
super.getBill1(20);
super.getBill();
System.out.printIn(super._billType);
((Light) this).getBill(20);
System.out.printin(((Light) this).billType);
}
}

—

// (4) Shadowing.

// (5) Overriding.

/7 (6)

17 (D)
/7 (8)
17 (9)
// (10)
/7 (11)
/7 (12)
/7 (13)

C211, Fall, 1999. KAM Object-oriented Programming

24/71

public class Client {

public static void main(String args[])
throws InvalidHoursException {
NeonLight neonRef = new NeonLight();
neonRef.demonstrate();

}
Output from the program:

Let there be light!
Large bill: 2000.0
No bill

Large bill

Large bill: 2000.0
Small bill

] [

C211, Fall, 1999. KAM Object-oriented Programming 25/71

—

Constructor Overloading
« Constructors cannot be inherited or overridden.

= They can be overloaded, but only in the same class.
class Light {

// Instance Variables

private int noOfWatts; // wattage
private boolean indicator; // on or off
private String location; // placement

// Constructors
Light() { // (1) Explicit default constructor]
noOfWatts = 0;
indicator = false;
location = "'X";
System.out.printIn("'‘Returning from default constructor no. 1.");

}
Light(int watts, boolean onOffState) { // (2) Non-default
noOfatts = watts;
indicator = onOffState;
location = "X";
System.out.printIn("'Returning from non-default constructor no. 2.");
}

] [

C211, Fall, 1999. KAM Object-oriented Programming 26/71

Output from the program:

Light(int noOfWatts, boolean indicator, String location) { // (3) Non—defaujt—
this.noOfWatts = noOfWatts;
this.indicator = indicator;
this.location = new String(location);
System.out.printIn('Returning from non-default constructor no. 3.'");

}

public class DemoConstructorCall {
public static void main(String args[]) { /7 (4)
System.
Light lightl = new Light();
System.
Light light2 = new Light(250, true);
System.
Light light3 = new Light(250, true, "attic");

}

Creating Light
Returning from
Creating Light
Returning from
Creating Light
Returning from

out.printin(Creating Light object no.1.");
out.printIn('Creating Light object no.2.");

out.printIn(’'Creating Light object no.3.");

object no.1.

default constructor no. 1.
object no.2.

non-default constructor no. 2.
object no.3.

non-default constructor no. 3.

cs21,

Fall, 1999.

KAM Object-oriented Programming 27171

—

The thisQ) construct can be regarded as being “locally overloaded”.
The thisQ call invokes the constructor with the corresponding parameter list.
Local chaining of constructors in the class when an instance of the class is created

Java specifies that when using the thisQ call, it must occur as the first statement
in a constructor, and it can only be used in a constructor definition.

Note the order in which the constructors are invoked in the example.

L

this() Constructor Call

CS211, Fall, 1999.

KAM Object-oriented Programming 28/71

—

Example 5 this(Q) Constructor Call

class Light {

// Instance Variables

private int noOfWatts;
private boolean indicator;
private String location;
// Constructors
LightQ {

this(0, false);

System.out.printIn("'‘Returning from default constructor no. 1.'");

}

Light(int watt, boolean ind) {
this(watt, ind, "X");

System.out.printIn(""Returning from non-default constructor no. 2.");

}

// (1) Explicit default constructor

// (2) Non-default

Light(int noOfWatts, boolean indicator, String location) { // (3) Non-default
this.noOfWatts = noOfWatts;
this.indicator = indicator;
this.location = new String(location);

System.out.printIn("'Returning from non-default constructor no. 3.");

CS211, Fall, 1999.

KAM

Object-oriented Programming

29/71

—

—

public class DemoThisCall {
public static void main(String args[]) {
System.out.printIn("'Creating Light object no.1.");
Light lightl = new Light();
System.out.printIn(*’Creating Light object no.2.");
Light light2 = new Light(250, true);
System.out.printin(*’Creating Light object no.3.");
Light light3 = new Light(250, true, "attic'");

}

Output from the program:

Creating Light
Returning from
Returning from
Returning from
Creating Light
Returning from
Returning from
Creating Light
Returning from

object no.1.
non-default constructor
non-default constructor
default constructor no.
object no.2.
non-default constructor
non-default constructor
object no.3.
non-default constructor

no. 3.
no. 2.

no. 3.
no. 2.

no. 3.

17 (%
/7 (5)
/7 (6)

17 (D)

CS211, Fall, 1999.

KAM

Object-oriented Programming

30/71

super() Constructor Call

= The super() construct is used in a subclass constructor to invoke constructors in

the immediate superclass.

< This allows the subclass to influence the initialization of its inherited state when

an object of the subclass is created.

= A super() call in the constructor of a subclass will result in the execution of the rel
evant constructor from the superclass, based on the arguments passed.

< The super() call must occur as the first statement in a constructor, and it can onlyf

be used in a constructor definition.

= This implies that this(Q) and super() calls cannot both occur in the same con

structor.

—

C211, Fall, 1999. KAM Object-oriented Programming

3171

—

Example 6 super() Constructor Call

class Light {
// Instance Variables

private int noOfWatts;
private boolean indicator;
private String location;

// Constructors

this(0, false);
System.out.printin(

}

Light(int watt, boolean ind) {
this(watt, ind, "X");
System.out._printin(

}

super();

this.noOfWatts = noOfWatts;

this. indicator = indicator;
this.location = new String(location);
System.out.printin(

—

LightQ { // (1) Explicit default constructor

"Returning from default constructor no. 1 in class Light");

// (2) Non-default

"Returning from non-default constructor no. 2 in class Light");

Light(int noOfWatts, boolean indicator, String location) { // (3) Non-default

/7 ()

"Returning from non-default constructor no. 3 in class Light");

C211, Fall, 1999. KAM Object-oriented Programming

32/71

class TubeLight extends Light {

// Instance variables
private int tubelength;
private int colorNo;

TubeLight(int tubelLength, int colorNo) { // (5) Non-default
this(tubeLength, colorNo, 100, true, "Unknown');
System.out.printin(
"Returning from non-default constructor no. 1 in class TubeLight");

}
TubeLight(int tubeLength, int colorNo, int noOfWatts,
boolean indicator, String location) { // (6) Non-default
super(noOfWatts, indicator, location); /7 (7)
this.tubeLength = tubelLength;
this.colorNo = colorNo;
System.out.printin(
"Returning from non-default constructor no. 2 in class TubeLight');
}

}

public class Chaining {
public static void main(String args[]) {
System.out.printIn(’Creating a TubeLight object.');
TubeLight tubeLightRef = new TubeLight(20, 5); // (8)

] [

C211, Fall, 1999. KAM Object-oriented Programming 33/71

—

Output from the program: I—

Creating a TubeLight object.

Returning from non-default constructor no. 3 in class Light
Returning from non-default constructor no. 2 in class TubeLight
Returning from non-default constructor no. 1 in class TubeLight

] [

C211, Fall, 1999. KAM Object-oriented Programming 34/71

—

(subclass—superclass) Constructor Chaining

The this() construct is used to “chain” constructors in the same class, and the conA
structor at the end of such a chain can invoke a superclass constructor using theg

super() construct.

The super() construct leads to chaining of subclass constructors to superclass con

structors.

This chaining behavior guarantees that all superclass constructors are called
starting with the constructor of the class being instantiated, all the way up to thg

root of the inheritance hierarchy, which is always the object class.

Note that the body of the constructors is executed in the reverse order to the call

order, as super() can only occur as the first statement in a constructor.

CS211, Fall, 1999. KAM

Object-oriented Programming

35/71

—

—

Default super() Call

If a constructor does not have either a this() or a super() call as its first statement
then a super() call to the default constructor in the superclass is inserted. The codg

class A {
public AQ {}
// ...

}

class B extends A {
// no constructors
// ...

}
is equivalent to

class A {
public AQ { superQ); }
/! ...

}

class B extends A {

public BQ) { super(Q); }
// ...

/7 (D)

/7 (2)

L

CS211, Fall, 1999. KAM

Object-oriented Programming

36/71

< If a class only defines non-default constructors (i.e. only constructors with ‘pares
meters), then its subclasses cannot rely on the implicit behavior of a super() cal
being inserted.

= This will be flagged as a compile time error.

« The subclasses must then explicitly call a superclass constructor, using the
super() construct with the right arguments.

class NeonLight extends TubeLight {
// Instance Variable
String sign;
NeonLight() { /7 (1)
super(10, 2, 100, true, "Roof-top"); // (2) Cannot be commented out.
sign = "All will be revealed!";
}
/...
}

= Subclasses without any declared constructors will fail to compile if the superclasg
does not have a default constructor and provides only non-default constructors.

] [

C211, Fall, 1999. KAM Object-oriented Programming 37/71

Summary of super() Call Usage
Superclass No constructors or Only non-default constructors Both default and non-default
only the default constructor constructors
Subclass Default super() call or Explicit non-default super() call Default super() call or
explicit default super() call explicit default super() call or
explicit non-default super() call

] [

C211, Fall, 1999. KAM Object-oriented Programming 38/71

Interfaces

= Java provides interfaces which allow new type names to be introduced and used
polymorphically, and also permit multiple interface inheritance.

< Interfaces support programming by contract.

] [

C211, Fall, 1999. KAM Object-oriented Programming 39/71

— Defining Interfaces L

= An interface defines a contract by specifying prototypes of methods, and not thein
implementation.

<interface header> {
<interface body>

}

< An interface is abstract by definition and therefore cannot be instantiated. If
should also not be declared abstract.

= Reference variables of the interface type can be declared.

] [

C211, Fall, 1999. KAM Object-oriented Programming 40/71

«interface»
IStack

push()
pop()

«interface»
ISafeStack Stackimpl

isFullQ R
isEmpty Egz(§)

SafeStackImpl

isFullQ
isEmpty()

Figure 3 Inheritance Relations

—

Object

C211, Fall, 1999. KAM Object-oriented Programming

41/71

—

Example 7 Interfaces

interface IStack {
void push(Object item);
Object pop(Q);

}

class Stacklmpl implements IStack {
protected Object[] stackArray;
protected int tos;

public StackImpl(int capacity) {
stackArray = new Object[capacity];
tos = -1;

}

public void push(Object item)
{ stackArray[++tos] = item; }

public Object pop() {
Object objRef = stackArray[tos];
stackArray[tos] = null;
tos--;
return objRef;

}
public Object peek() { return stackArray[tos]; }

—

/7 (D)

/7 (2

/7 (3

/7 ()

C211, Fall, 1999. KAM Object-oriented Programming

42/71

—

interface ISafeStack extends IStack {
boolean isempty();
boolean isFull();

}
class SafeStacklmpl extends Stacklmpl implements ISafeStack {

public SafeStacklmpl(int capacity) { super(capacity); }
public boolean isEmpty() { return tos < 0; }
public boolean isFull() { return tos >= stackArray.length; }

}

public class StackUser {

public static void main(String args[]) {
SafeStackImpl safeStackRef = new SafeStacklmpl(10);
Stacklmpl stackRef = safeStackRef;
ISafeStack isafeStackRef = safeStackRef;
IStack istackRef = safeStackRef;
Object objRef = safeStackRef;

safeStackRef.push('Dollars™);
stackRef.push("'Kroner');
System.out.printin(isafeStackRef.pop());
System.out.printin(istackRef.pop());
System.out.println(objRef.getClass());

/7 (5)

// (6)

/7 (7))
/7 (8)

17 (9)

/7 (10)

C211, Fall, 1999. KAM Object-oriented Programming

43/71

—

—

Output from the program:

Kroner
Dollars
class SafeStacklimpl

C211, Fall, 1999. KAM Object-oriented Programming

44/71

—

Implementing Interfaces
Any class can elect to implement, wholly or partially, zero or more interfaces.

Classes implementing interfaces thus introduce multiple interface inheritancg
into their linear implementation inheritance hierarchy.

A class specifies the interfaces it implements as a comma-separated list using the
implements clause in the class header.

The interface methods will all have public accessibility when implemented in thg
class (or its subclasses).

A class can choose to implement only some of the methods of its interfaces, i.e
give a partial implementation of its interfaces.

= The class must then be declared as abstract.
Note that interface methods cannot be declared static, because they comprise the

contract fulfilled by the objects of the class implementing the interface and arg
therefore instance methods.

C211, Fall, 1999. KAM Object-oriented Programming 45/71

—

—

Extending Interfaces
An interface can extend other interfaces, using the extends clause.
Unlike extending classes, an interface can extend several interfaces.

Multiple inheritance of interfaces can result in an inheritance hierarchy which has
multiple roots designated by different interfaces.

Note that there are three different inheritance relations at work when defining
inheritance between classes and interfaces:

Linear implementation inheritance hierarchy between classes: a class extends
another class.

Multiple inheritance hierarchy between interfaces: an interface extends other
interfaces.

Multiple interface inheritance hierarchy between interfaces and classes: a class
implements interfaces.

There is only one single implementation inheritance into a class, which avoids
many problems associated with general mutiple inheritance.

—

C211, Fall, 1999. KAM Object-oriented Programming 46/71

—

Supertypes
Interfaces define new types.

Although interfaces cannot be instantiated, variables of an interface type can bd
declared.

If a class implements an interface, then references to objects of this class and itd
subclasses can be assigned to a variable of this interface type.

The interfaces that a class implements and the classes it extends, directly or indi-
rectly, are called its supertypes.

= A supertype is thus a reference type.

Interfaces with empty bodies are often used as markers to “tag” classes as having
a certain property or behavior (java.io.Serializable).

Note that a class inherits only one implementation of a method, regardless of how
many supertypes it has.

C211, Fall, 1999. KAM Object-oriented Programming 47/71

—

—

Constants in Interfaces
An interface can also define constants.
Such constants are considered to be public, static and final.

An interface constant can be accessed by any client (a class or interface) using its
fully qualified name, regardless of whether the client extends or implements it
interface.

A class that implements this interface or an interface that extends this interface
can also access such constants directly without using the dot (.) notation.

Extending an interface which has constants is analogous to extending a class
having static variables.

= |n particular, these constants can be shadowed by the subinterfaces.

In the case of multiple inheritance, any name conflicts can be resolved using fully
gualified names for the constants involved.

= The compiler will flag such conflicts.

C211, Fall, 1999. KAM Object-oriented Programming 48/71

—

Example 8 Variables in Interfaces

interface Constants {
double Pl = 3.14;
String AREA_UNITS = " sq.cm.™;
String LENGTH_UNITS = " cm.";

}

public class Client implements Constants {
public static void main(String args[]) {
double radius = 1.5;
System.out.printIn("Area of circle is " + (Pl*radius*radius) +
AREA_UNITS); // (1) Direct access.
System.out.printIn("Circumference of circle is " + (2*Pl*radius) +
Constants.LENGTH_UNITS); // (2) Fully qualified name.

}
Output from the program:

Area of circle is 7.0649999999999995 sq.cm.
Circumference of circle is 9.42 cm.

C211, Fall, 1999. KAM Object-oriented Programming 49/71

—

—

Types in Java

‘ Corresponding Types:

Primitive data values Primitive datatypes.

Reference values Class, interface or array type (called
reference types).

Objects Class or array type.

= Only primitive data and reference values can be stored in variables.
= Arrays are objects in Java.

= Array types (boolean[], Object[], Stacklmpl[]) implicitly augment the inheritancq
hierarchy.

= All array types implicitly extend the object class

< Note the difference between arrays of primitive datatypes and class types.
= Arrays of reference types also extend the array type object[].

= Variables of array reference types can be declared, and arrays of reference typeq
can be instantiated.

= An array reference exhibits the same polymorphic behavior as any other refer
ence, subject to its location in the extended inheritance hierarchy.

C211, Fall, 1999. KAM Object-oriented Programming 50/71

Object
boolean[] double[] ‘ Object[] ‘ ‘;'gtfgﬁieﬂ
D\ : V\
- «interface»
Stackimpl[] ISafeStack[1]
SafeStackimpl[]
I Figure 4 Array Types in Inheritance Hierarchy I
C211, Fall, 1999. KAM Object-oriented Programming 5171

—

—

Assigning, Passing and Casting References L

Reference values, like primitive values, can be assigned, cast and passed as argu-
ments.

For values of the primitive datatypes and reference types, conversions occur dur-
ing:

= Assignment

= Parameter passing
= Explicit casting

The rule of thumb for the primitive datatypes is that widening conversions arg
permitted, but narrowing conversions require an explicit cast.

The rule of thumb for reference values is that conversions up the inheritance hier
archy are permitted (called upcasting), but conversions down the hierarchyj
require explicit casting (called downcasting).

The parameter passing conversion rules are useful in creating generic data types whicH
can handle objects of arbitrary types.

C211, Fall, 1999. KAM Object-oriented Programming 52/71

—

Example 9 Assigning and Passing Reference Values

interface IStack { /* See Example 7 for definition */ }
class Stacklmpl implements IStack { /* See Example 7 for definition */ }
interface ISafeStack extends IStack { /* See Example 7 for definition */ }
class SafeStacklmpl extends Stacklmpl implements ISafeStack {

/* See Example 7 for definition */

}

public class ReferenceConversion {
public static void main(String args[]) {

Object objRef;

StackImpl stackRef;

SafeStackImpl safeStackRef = new SafeStacklmpl(10);
IStack iStackRef;

ISafeStack iSafeStackRef;

// SourceType is a class type

objRef = safeStackRef; // (1) Always possible
stackRef = safeStackRef; // (2) Subclass to superclass assignment
iStackRef = stackRef; // (3) Stacklmpl implements IStack

iSafeStackRef = safeStackRef;// (4) SafeStacklmpl implements ISafeStack

// SourceType is an interface type
objRef = iStackRef; // (5) Always possible
iStackRef = iSafeStackRef; // (6) Sub- to super-interface assignment

—

C211, Fall, 1999. KAM Object-oriented Programming 53/71

—

—

// SourceType is an array type.

Object[] objArray = new Object[3];

StackImpl[] stackArray = new Stackimpl[3];
SafeStackImpl[] safeStackArray = new SafeStackImpl[5];
ISafeStack[] i1SafeStackArray = new SafeStackImpl[5];
int[] intArray = new int[10];

objRef = objArray; // (7) Always possible
objRef = stackArray; // (8) Always possible
objArray = stackArray; // (9) Always possible
objArray = iSafeStackArray; // (10) Always possible
objRef = intArray; // (11) Always possible
// objArray = intArray; // (12) Compile time error
stackArray = safeStackArray; // (13) Subclass array to superclass array
iSafeStackArray =
safeStackArray; // (14) SafeStacklmpl implements ISafeStack

// Parameter Conversion
System.out.printin("First call:");
sendParams(stackRef, safeStackRef, iStackRef,

safeStackArray, iSafeStackArray); // (15)
// Call Signature: sendParams(Stacklmpl, SafeStacklmpl, IStack,
// SafeStackImpl[], ISafeStack[]);

System.out.printin(*'Second call:™);
sendParams(iSafeStackArray, stackRef, iSafeStackRref,

stackArray, safeStackArray); // (16)
// Call Signature: sendParams(lSafeStack[], Stacklmpl, lISafeStack,
// StacklImpl[], SafeStackimpl[]);

}

C211, Fall, 1999. KAM Object-oriented Programming 54/71

Output from the program:

public static void sendParams(Object objRefParam, Stacklmpl stackRefParam,
IStack iStackRefParam, StackImpl[] stackArrayParam,
IStack[] iStackArrayParam) { /7 (17)
// Signature: sendParams(Object, Stacklmpl, IStack, StackImpl[], IStack[])
// Print class name of object denoted by the reference at runtime.
System.out.println(objRefParam.getClass());
System.out.printIn(stackRefParam.getClass());
System.out.printIn(iStackRefParam.getClass());
System.out.printin(stackArrayParam.getClass());
System.out.printIn(iStackArrayParam.getClass());

}

First call:

class SafeStacklimpl
class SafeStacklimpl
class SafeStacklimpl
class [LSafeStackimpl;
class [LSafeStacklmpl;
Second call:

class [LSafeStacklmpl;
class SafeStacklimpl
class SafeStacklimpl
class [LSafeStackimpl;
class [LSafeStacklmpl;

cs21,

Fall, 1999. KAM Object-oriented Programming 55/71

—

Reference Casting and instanceof Operator L

The expression to cast <reference> of <source type> to <destination type> has thd
following syntax:

(<destination type>) <reference>
The binary instanceof operator has the following syntax:
<reference> instanceof <destination type>

The instanceof operator (note that the keyword is composed of only lowercasq
letters) returns the value true if the left-hand operand (any reference) can be cas{
to the right-hand operand (a class, interface or array type).

A compile time check determines whether a reference of <source type> and a refer-
ence of <destination type> can denote objects of a class (or its subclasses) wherg
this class is a common subtype of both <source type> and <destination type> in theg
inheritance hierarchy.

At runtime, it is the actual object denoted by the reference that is compared with
the type specified on the right-hand side.

Typical usage of the instanceof operator is to determine what object a reference i
denoting.

—

C211, Fall, 1999. KAM Object-oriented Programming 56/71

Example 10 instanceof and cast Operator

class Light { /7* ... */ }

class LightBulb extends Light { /7* ... */ }

class SpotLightBulb extends LightBulb { /7* ... */ }
class TubeLight extends Light { /7* ... */ }

class NeonLight extends TubeLight { /7* ... */ }

public class WhoAml {
public static void main(String args[]) {
boolean resultl, result2, result3, result4, result5;

Light lightl = new LightBulb(); /7 (D
// String str = (String) lightl; // (2) Compile time error.
// resultl = lightl instanceof String; // (3) Compile time error.

result2 = lightl instanceof TubelLight; // (4) false. Peer class.
// TubelLight tubeLightl = (TubeLight) lightl;// (5) ClassCastException.

result3 = lightl instanceof SpotLightBulb;// (6) false: Superclass
// SpotLightBulb spotRef = (SpotLightBulb) lightl;// (7) ClassCastException

lightl = new NeonLight(); /7 (8)

if (lightl instanceof TubelLight) { // (9) true
TubeLight tubeLight2 = (TubeLight) lightl; // (10) OK
// Can now use tubelLight2 to access object of class NeonLight.

}
}
}
C211, Fall, 1999. KAM Object-oriented Programming 57/71
—I Converting References of Class and Interface Types I—

= Upcasting: References of interface type can be declared, and these can denotg
objects of classes that implement this interface.

< Downcasting: converting a reference of interface type to the type of the clasg
implementing the interface requires explicit casting.

IStack istackOne = new Stacklmpl(5); // Upcasting

StacklImpl stackTwo = (Stacklmpl) istackOne; // Downcasting

Object objl = istackOne.pop(); // OK. Method in IStack interface.

Object obj2 = istackOne.peek(); // Not OK. Method not in IStack interface.

] [

C211, Fall, 1999. KAM Object-oriented Programming 58/71

—

Polymorphism and Dynamic Method Lookup

Which object a reference will actually denote during runtime cannot always be
determined at compile time.

Polymorphism allows a reference to denote different objects in the inheritancg
hierarchy at different times during execution.

= Such a reference is a supertype reference.

When a method is invoked using a reference, the method definition which actu-
ally gets executed is determined both by the class of the object denoted by the ref
erence at runtime and the method signature.

Dynamic method lookup is the process of determining which method definition
a method signature denotes during runtime, based on the class of the object.

Polymorphism and dynamic method lookup form a powerful programming par
adigm which simplifies client definitions, encourages object decoupling and sup-
ports dynamically changing relationships between objects at runtime.

C211, Fall, 1999. KAM Object-oriented Programming 59/71

—

—

«interface»
IDrawable

draw()
AN

Shape Map

draw() draw()

Rectangle Circle

draw() draw()

Square

draw()

Figure 5 Polymorphic Methods

C211, Fall, 1999. KAM Object-oriented Programming 60/71

| Example 11 Polymorphism and Dynamic Method Lookup

interface IDrawable {
void draw();

}

class Shape implements IDrawable {
public void draw() { System.out.printin(*Drawing a Shape."); }
}

class Circle extends Shape {
public void draw() { System.out.printIn(*Drawing a Circle."); }
}

class Rectangle extends Shape {
public void draw() { System.out.printIn(*Drawing a Rectangle.'); }

}

class Square extends Rectangle {
public void draw() { System.out.printin(*Drawing a Square."); }

}

class Map implements IDrawable {
public void draw() { System.out.printIn(*Drawing a Map.'); }

}

] [

C211, Fall, 1999. KAM Object-oriented Programming 61/71

—I public class PolymorphRefs { I—

public static void main(String args[]) {
Shape[] shapes = {new Circle(), new Rectangle(), new Square(Q)}; 7/ (1)
IDrawable[] drawables = {new Shape(), new Rectangle(), new Map(Q};// (2)

System.out.printin("Draw shapes:™);
for (int 1 = 0; 1 < shapes.length; i++) /7 3)
shapes[i].drawQ);

System.out.printin('Draw drawables:');
for (int 1 = 0; 1 < drawables.length; i++) /7 (4)
drawables[i].draw();

}
Output from the program:

Draw shapes:

Drawing a Circle.
Drawing a Rectangle.
Drawing a Square.
Draw drawables:
Drawing a Shape.
Drawing a Rectangle.
Drawing a Map.

] [

C211, Fall, 1999. KAM Object-oriented Programming 62/71

—

Choosing between Inheritance and Aggregation

Choosing between inheritance and aggregation to model relationships can be g
crucial design decision.

A good design strategy advocates that inheritance should be used only if the rela-
tionship is-a is unequivocally maintained throughout the lifetime of the objects
involved, otherwise aggregation is the best choice.

A role is often confused with an is-a relationship.

< Changing roles would involve a new object to represent the new role every
time this happened.

Code reuse is also best achieved by aggregation when there is no is-a relationship
Aggregation with method delegating can result in robust abstractions.

Both inheritance and aggregation promote encapsulation of implementation, ag
changes to the implementation are localized to the class.

Changing the contract of a superclass can have consequences for the subclasseg
(called the ripple effect) and also for clients who are dependent on a particulan
behavior of the subclasses.

—

C211, Fall, 1999. KAM Object-oriented Programming 63/71

—

—

Achieving Polymor phism L
Polymorphism is achieved through inheritance and interface implementation.

Code relying on polymorphic behavior will still work without any change if newf
subclasses or new classes implementing the interface are added.

If no obvious is-a relationship is present, then polymorphism is best achieved by
using aggregation with interface implementation.

C211, Fall, 1999. KAM Object-oriented Programming 64/71

has 0.1 next| 0.1 has

has head
QueueByAggregation »—————| LinkedList has 0.1 Node

s

tail

StackByInheritance

Figure 6 Inheritance and Aggregation

] [

C211, Fall, 1999. KAM Object-oriented Programming 65/71

—

Example 12 Inheritance and Aggregation

class Node { /7 (1)
private Object data; // Data
private Node next; // Next node

// Constructor for initializing data and reference to the next node.
public Node(Object obj, Node link) {

data = obj;

next link;

}

// Accessor methods
public void setData(Object obj) { data = obj; }
public Object getData() { return data; }
public void setNext(Node node) { next = node; }
public Node getNext() { return next; }

}

class LinkedList { /7 (2)

protected Node head = null;

protected Node tail = null;

// Modifier methods

public void insertinFront(Object dataObj) {
if (isEmpty()) head = tail = new Node(dataObj, null);
else head = new Node(dataObj, head);

] [

C211, Fall, 1999. KAM Object-oriented Programming 66/71

public void insertAtBack(Object dataObj) {
if (isEmpty(Q))
head = tail = new Node(dataObj, null);
else {
tail.setNext(new Node(dataObj, null));
tail = tail.getNext();
3
}
public Object deleteFromFront() {
if (isEmpty()) return null;
Node removed = head;
if (head == tail) head = tail = null;
else head = head.getNext();
return removed.getData();
}
// Selector method
public boolean isEmpty() { return head == null; }

}

class QueueByAggregation { /7 (3)
private LinkedList glList;
// Constructor
public QueueByAggregation() {
gList = new LinkedList();
}
// Methods
public void enqueue(Object item) { gList.insertAtBack(item); }

—

C211, Fall, 1999. KAM Object-oriented Programming

67/71

—I public Object dequeue() {
if (empty()) return null;
else return gList.deleteFromFront();
}
public Object peek() {
Object obj = dequeue();
if (obj '= null) gList.insertinFront(obj);
return obj;

public boolean empty() { return gList.isEmpty(); }
}

class StackBylnheritance extends LinkedList { /7 ()
public void push(Object item) { insertinFront(item); }
public Object pop() {
if (empty()) return null;
else return deleteFromFront();

}
public Object peek() {
return (isEmpty() ? null : head.getData());

}
public boolean empty() { return isEmpty(); }

—

C211, Fall, 1999. KAM Object-oriented Programming

68/71

public class Client { /7 (5)
public static void main(String args[]) {
String stringl = "Queues are boring to stand in!";
int lengthl = stringl.length();
QueueByAggregation queue = new QueueByAggregation();
for (int 1 = 0; i<lengthl; i++)
queue.enqueue(new Character(stringl.charAt(i)));
while (lqueue.empty())
System.out.print((Character) queue.dequeue());
System.out.printin();

String string2 = "Ino tis ot nuf era skcatS";
int length2 = string2.length();
StackBylnheritance stack = new StackBylnheritance();
for (int 1 = 0; i<length2; i++)
stack.push(new Character(string2.charAt(i)));
stack. insertAtBack(new Character(’!”)); // (6)
while (Istack.empty())
System.out.print((Character) stack.pop());
System.out.printin();

}
Output from the program:

Queues are boring to stand in!
Stacks are fun to sit on!

] [

C211, Fall, 1999. KAM Object-oriented Programming 69/71

— Encapsulation L

= Encapsulation helps to make clear the distinction between an object’s contract
and implementation.

= Encapsulation has major consequences for program development.
= Results in programs that are "black boxes".
= Implementation of an object can change without implications for the clients.

= Reduces dependency between program modules (hence complexity), as thg
internals of an object are hidden from the clients, who cannot influence its
implementation.

= Encourages code-reuse.

] [

C211, Fall, 1999. KAM Object-oriented Programming 70/71

Encapsulation Levels

Packages

-

1

Classes

=

Data/ \Methods

= i

Data Blocks

Data

] [

C211, Fall, 1999. KAM Object-oriented Programming 7U71

