
CS211, Fall 1999. KAM GUI.fm 1/67

GUI

Graphical User Interfaces

CS211, Fall 1999. KAM GUI 2/67

Overview: AWT (Abstract Window Toolkit)

• Containers and Components

• Component Hierarchy:
– Component layout using layout managers

• Event driven programming: events, listeners and sources

• Implementing listeners using:
– Adapter Classes
– Anonymous Classes

CS211, Fall 1999. KAM GUI 3/67

GUI-based Applications
• Developing GUI based application requires understanding of:

• Structure of the inheritance hierarchy which defines the behavior and 
attributes of the components in the GUI of the application.

• Structure of the component hierarchy which defines how components are 
put together in the GUI of the application.

• Handling of events during the interaction between the GUI and the user.

JFC: Java Foundation Classes
• Java provides JFC for developing GUI based application.

– AWT (Abstract Window Toolkit) package (java.awt) which mostly uses 
heavy-weight components.

– Swing (javax.swing) which mostly uses light-weight components.

• JFC makes it easier to develop GUI based applications
– Use container and layout managers to design the GUI.
– Use event delegation model to handle events.

CS211, Fall 1999. KAM GUI 4/67

Inheritance Hierarchy: java.awt.*

Panel

Applet

EventObjectGraphics
Container

Window

Frame

Canvas

Button
Component

Object

Checkbox

TextComponent

Label

Choice

Scrollbar

TextFieldTextArea

List

GUI Control Components

(java.applet)

«abstract»

«abstract»

Dialog

AWTEvent

(java.lang)

(java.util)



CS211, Fall 1999. KAM GUI 5/67

Component
• All non-menu related components for building a GUI are derived from the 

abstract class Component.

• The Component class (and its subclasses) provides support for handling 
events, changing a component’s size, control of color and fonts, and 
painting of components and their contents.

• A component (and any of its child components) can be made visible or 
invisible by calling the method setVisible(boolean) method with the 
appropriate argument.

• Note that a component is an object of a concrete subclass of Component class.

CS211, Fall 1999. KAM GUI 6/67

Container
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Container (abstract)

• A container is an object of a concrete subclass of Container class.

• A container is a component which can contain other components (and thereby can 
contain other containers since a component can be a container because of 
inheritance).

• The abstract class Container defines methods for nesting of other 
component objects in a container.
– Such a nesting defines a component hierarchy (in contrast to the inheritance 

hierarchy).
– The add(Component comp) method can be used by a container to nest a 

component.

• A container uses a layout manager to position the components inside it.
– The setLayout(…)method can be used to associate a layout manager with 

a container.

CS211, Fall 1999. KAM GUI 7/67

Panel
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Container (abstract)
                   |
                   +----java.awt.Panel

• The Panel class is a concrete subclass of the Container class.

• A panel is a container and a component.

• It is a window which has no title, menus or borders, but can contain other 
components.

• It is an ideal candidate for grouping components.
– The inherited add() method can be use to add a component to a panel.
– A panel uses the FlowLayout manager as the default layout manager.

CS211, Fall 1999. KAM GUI 8/67

Window
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Container (abstract)
                   |
                   +----java.awt.Window

• The Window class can be used to create a top-level window which has does 
not have a title, menus or borders.

• A top-level window cannot be incorporated/nested in a container.

• A top-level window (and its components) must be explicitly made visible by 
the call setVisible(true), and explicitly made invisible by the call 
setVisible(false).



CS211, Fall 1999. KAM GUI 9/67

Frame
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Container (abstract)
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Frame

• The Frame class can be used to create what we usually call a window on the 
screen.

• It has a title, menus, border, cursor, and an icon.

• A Frame object is usually the starting point of a GUI based application, and 
forms the root of a component hierarchy.
– A Frame object being a container can contain other panels which in turn 

can contain other panels and GUI control components.

CS211, Fall 1999. KAM GUI 10/67

Dialog
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Container (abstract)
                   |
                   +----java.awt.Window
                           |
                           +----java.awt.Dialog

• The Dialog class also defines a top-level window, often called a dialog box.

• However it has only title and border, and no menus or icon.

• A dialog box can be modal (i.e. no other window can be accessed while this 
window is visible) or modeless (i.e. other windows can be accessed while this 
window is visible).

• A dialog box can contain other panels which in turn can contain other 
panels and GUI control components.

• A dialog box is usually used to get input from the user or show information 
to the user.

CS211, Fall 1999. KAM GUI 11/67

Canvas
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Canvas

• The Canvas class is a subclass of Component class, and defines a GUI control 
component.

• Subclassing the Canvas class is one way of implementing new components 
as a canvas has no visible representation. 
– Visuals can be drawn in a canvas by overriding the paint(Graphics 
gfx) method from the Component class.

CS211, Fall 1999. KAM GUI 12/67

Applet
java.lang.Object
   |
   +----java.awt.Component (abstract)
           |
           +----java.awt.Container (abstract)
                   |
                   +----java.awt.Panel
                           |
                           +----java.applet.Applet

• An applet is a specialized panel which can be embedded in an applet-context 
(for example, a Web browser).

• Since an applet has the Component class as superclass:
– It can draw onto itself by overriding the paint() method.

• Since an applet has the Panel class as superclass:
– Other components can be embedded in an applet to create a full-fledged 

GUI.



CS211, Fall 1999. KAM GUI 13/67

GUI control components

Canvas

ButtonComponent
Object

Checkbox

TextComponent

Label

Choice

Scrollbar

TextFieldTextArea

List

«abstract»

• GUI control components make inter action between 
the user and the application possible.

• Input-components: obtain information from the user, for 
example, Button, TextField, Checkbox.

• Output-components: present information from the user, 
for example, TextField, TextArea.

• GUI control components can be added to a container 
using the add() method.

• A layout manager (associated with the container of a 
component) is used to position the GUI component in 
the container.

• "Look and feel" of the GUI is decided by the platform 
on which the application is run.

CS211, Fall 1999. KAM GUI 14/67

Information in and out of GUI control components
• TextArea, TextField: 

– use getText() which returns a String object.
– use setText(String str) to write a String object in the component.
– use setEditable(boolean) if the text is editable or not.
– Text must be converted to and from the appropriate numerical data type.

• Checkbox: 
– use getState() if the Checkbox is selected or not.
– use setState(boolean state) to set the state of a Checkbox object equal 

to the value of the parameter.

CS211, Fall 1999. KAM GUI 15/67

Layout Management
• A container uses a layout manager to position components inside it.

• The three most common layout managers are
– FlowLayout manager
– BorderLayout manager
– GridLayout manager

• A layout manager is associated with a container by calling the 
setLayout(…)method.

• Component hierarchy is usually built by adding components to containers 
using the add() method defined for all containers.

CS211, Fall 1999. KAM GUI 16/67

FlowLayout manager
• FlowLayout manager is the default layout manager for a panel (and thereby 

all applets).

• FlowLayout manager inserts components row-major in a container, from left 
to right and top to bottom, starting a new row depending on the container’s 
width and if there is not enough room for all the components.

• FlowLayout manager honors the preferred size of the components, but 
spatial relationships can change depending on the size of the container.

container.setLayout(new FlowLayout()); // not necessary for Panel.
container.add(component);



CS211, Fall 1999. KAM GUI 17/67

Example of FlowLayout

import java.awt.*;

public class FlowLayoutDemo extends Frame {
    FlowLayoutDemo() {

        super("FlowLayoutDemo");
        // Create a checkboxgroup
        CheckboxGroup sizeOptions = new CheckboxGroup();

        // Create 3 checkboxes and add them to the checkboxgroup.
        Checkbox cb1 = new Checkbox("Large",  sizeOptions, true);
        Checkbox cb2 = new Checkbox("Medium", sizeOptions, false);
        Checkbox cb3 = new Checkbox("Small",  sizeOptions, false);

        // Create and set a FlowLayout manager
        setLayout(new FlowLayout());

CS211, Fall 1999. KAM GUI 18/67

        // Add the checkboxes
        add(cb1);
        add(cb2);
        add(cb3);

        // Show the GUI in the frame
        setSize(200, 100);
        setVisible(true);
    }

    public static void main(String args[]) {
        new FlowLayoutDemo();
    }
}

CS211, Fall 1999. KAM GUI 19/67

GridLayout manager
• A GridLayout manager divides the region of the container in to a matrix of rows 

and columns (i.e. a rectangular grid). 

• Components have row-major allocation, where each component occupies a cell. 

• All the cells in the grid have the same size, i.e. same width and height. 

• The cell size is dependent on the number of components to be placed in the 
container and the container's size. 

• A GridLayout manager ignores a component's preferred size, and a component is 
stretched if possible to fill the cell. 
• A common practice to avoid components being stretched is first to stick the 

component in a panel (using FlowLayout manager) and then adding the panel to 
the container, as the components in the panel will not stretch. 

container.setLayout(new GridLayout(2,3)); // 2x3 grid
container.add(comp1);
container.add(comp2);
container.add(comp3);

[0,0] [0,1] [0,2]

[1,0] [1,1] [1,2]

CS211, Fall 1999. KAM GUI 20/67

Example of GridLayout

import java.awt.*;
public class GridLayoutDemo extends Frame {
    GridLayoutDemo() {

        super("GridLayoutDemo");
        // Create 2 labels and 2 text fields
        Label xLabel = new Label("X Coordinate:");
        Label yLabel = new Label("Y Coordinate:");
        TextField xInput = new TextField(5);
        TextField yInput = new TextField(5);

        // Set the font the background color
        xLabel.setFont(new Font("Serif", Font.BOLD, 14));
        yLabel.setFont(new Font("Serif", Font.BOLD, 14));



CS211, Fall 1999. KAM GUI 21/67

        xInput.setBackground(Color.yellow);
        yInput.setBackground(Color.yellow);

        // Create and set a GridLayout with 2 x 2 grid
        setLayout(new GridLayout(2,2));

        // Add the components
        add(xLabel); // [0,0]
        add(xInput); // [0,1]
        add(yLabel); // [1,0]
        add(yInput); // [1,1]

        // Show the GUI in the frame
        setSize(200, 100);
        setVisible(true);
    }

    public static void main(String args[]) {
        new GridLayoutDemo();
    }
}

CS211, Fall 1999. KAM GUI 22/67

BorderLayout manager
• BorderLayout manager is the default layout manager for a Frame.

• BorderLayout manager inserts components in the four compass directions 
("North", "South", "East", "West") and in the center ("Center") of the 
container.

• BorderLayout manager does not honor the preferred size of the 
components, but spatial relationships remain the same regardless of the 
change in the size of the container.

container.setLayout(new BorderLayout()); // not necessary for Frame.
container.add(comp1, BorderLayout.NORTH);
container.add(comp2, BorderLayout.SOUTH);

NORTH

WEST CENTER EAST

SOUTH

CS211, Fall 1999. KAM GUI 23/67

Example of BorderLayout

import java.awt.*;
public class BorderLayoutDemo extends Frame {
    BorderLayoutDemo() {

        super("BorderLayoutDemo");
        // Create a text field
        TextField msg = new TextField("MESSAGE DISPLAY");
        msg.setEditable(false);

        // Create a button
        Button drawButton = new Button("Draw");

CS211, Fall 1999. KAM GUI 24/67

        // Create a canvas
        Canvas drawRegion = new Canvas();
        drawRegion.setSize(150,150);
        drawRegion.setBackground(Color.white);
        // Create 2 vertical scrollbars
        Scrollbar sb1 = new Scrollbar(Scrollbar.VERTICAL,0, 10,-50,100);
        Scrollbar sb2 = new Scrollbar(Scrollbar.VERTICAL,0, 10,-50,100);
        // Create and set border layout
        setLayout(new BorderLayout());
        // Add the components in designated regions
        add(drawButton, BorderLayout.NORTH);
        add(msg, BorderLayout.SOUTH);
        add(drawRegion, BorderLayout.CENTER);
        add(sb1, BorderLayout.WEST);
        add(sb2, BorderLayout.EAST);
        // Show the GUI in the frame
        setSize(200, 100);
        setVisible(true);
    }

    public static void main(String args[]) {
        new BorderLayoutDemo();
    }
}



CS211, Fall 1999. KAM GUI 25/67

Events and the AWT Thread
• Gui based applications are event-driven.

• A special thread, called the AWT thread, is responsible for interaction with 
the user.

• Events are generated and sent to the application during interaction with the 
user.
– An event can give information to the application on what action the user 

has performed (pressed a mouse button, moved the mouse cursor, 
pressed a key, closed the window, moved the window, scrolled up, made 
a menu choice, etc.), and/or how its context has changed (window 
uncovered, etc.)

• Event-handling is done by event handlers: 
– Event-handlers in the application are responsible for correct handling of 

events. I Java, these are called listeners.
– A listener is notified of the events it is interested in.
– A listener should not hoard the AWT thread.
– A listener should do computation intensive tasks in a separate thread, 

allowing the AWT thread to continue monitoring the user interaction.
– Note that events can occur in an arbitrary sequence, and are usually user 

initiated.

CS211, Fall 1999. KAM GUI 26/67

Events
java.lang.Object
   |
   +----java.util.EventObject
           |
           +----java.awt.AWTEvent (abstract)

• EventObject class encapsulates all the information about an event.

• AWTEvent class is the superclass of all classes that represent categories of 
events generated by components.
– The method getSource() on an event can be used to identify the source of 

the event.

• Objects of these event classes encapsulate additional information that identifies the 
exact nature of the event. 
• For example, the MouseEvent class categorizes events relating to a mouse-

button being clicked (MouseEvent.MOUSE_CLICKED), the mouse being dragged 
(MouseEvent.MOUSE_DRAGGED) 

• These values (MouseEvent.MOUSE_CLICKED, MouseEvent.MOUSE_DRAGGED) 
constitute an ID for the event. The class java.awt.AWTEvent provides a 
method that returns an event's ID:

– The method getID() on an event returns the ID (type) of the event.

CS211, Fall 1999. KAM GUI 27/67

Event Hierarchy

ActionEvent

AdjustmentEvent

ComponentEvent

ItemEvent

TextEvent

ContainerEvent

FocusEvent

InputEvent

PaintEvent

WindowEvent

KeyEvent

MouseEvent

java.awt.event.*

AWTEvent

CS211, Fall 1999. KAM GUI 28/67

Semantic Event Classes

• The following event classes represent semantic events: 

ActionEvent This event is generated by an action performed on a component.
GUI components that generate these events:

• Button - when a button is clicked.
• List - when a list item is double-clicked.
• MenuItem - when a menu item is selected.
• TextField - when ENTER key is hit in the text field.

The ActionEvent class provides the following useful methods:

• public String getActionCommand()
Returns the command name associated with this action. The command name is a
button label, a list-item name, a menu-item name or text depending on whether
the component was a Button, List, MenuItem or TextField object.

AdjustmentEvent This event is generated when adjustments are made to an adjustable component like a scroll bar.
GUI component that generates these events:

• Scrollbar - when any adjustment is made using the slider or the end-arrows of the
scroll bar.

The AdjustmentEvent class provides the following useful method:

• public int getValue()
Returns the current value denoted by the adjustable component.



CS211, Fall 1999. KAM GUI 29/67

ItemEvent This event is generated when an item is selected or deselected in an ItemSelectable com-
ponent.
GUI components that generate these events:

• Checkbox - when the state of a checkbox changes.
• CheckboxMenuItem - when the state of a checkbox associated with a menu item chang-

es.
• Choice - when an item is selected or deselected in a choice-list.
• List - when an item is selected or deselected from a list.

The ItemEvent class provides the following useful methods:

• public Object getItem()
The object returned is actually a String object containing the label of the checkbox or
the CheckMenuItem, or the label of the item in a choice or a list.

• public int getStateChange()
The returned value indicates whether it was a selection or a de-selection that took place,
given by the two constants from the ItemEvent class:

public static final int SELECTED
public static final int DESELECTED

TextEvent This event is generated when contents of a text component are changed.
GUI component that generates these events are subclasses of the TextComponent class:

• TextArea
• TextField

CS211, Fall 1999. KAM GUI 30/67

Low-level Events

• The following event classes generate low-level events:
KeyEvent This class is a subclass of the abstract InputEvent class. 

This event is generated when the user presses or releases a key, or types (i.e. both presses and
releases) a character. 
These situation are characterized by the following constants in the KeyEvent class:

• public static final int KEY_PRESSED
This event is delivered when a key is pressed.

• public static final int KEY_RELEASED
This event is delivered when a key is released.

• public static final int KEY_TYPED
This event is delivered when a key is typed, i.e. that a key is pressed and then released to
signify typing a character. 

The inherited getID() method returns the specific type of the event denoted by one of the con-
stants given above.
In addition, the inherited method getWhen() from the parent class InputEvent can be used
to get the time when the event took place.
These events are generated by the Component class and its subclasses.
The KeyEvent class provides the following useful methods:

• public int getKeyCode() 
For KEY_PRESSED or KEY_RELEASED KeyEvents, this method can be used to get the
actual key (called virtual key) that was pressed or released.

• public char getKeyChar()
For KEY_TYPED KeyEvents, the method can be used to get the Unicode character that
resulted from hitting a key.

CS211, Fall 1999. KAM GUI 31/67

MouseEvent This class is a subclass of the abstract InputEvent class.
This event is generated when the user moves the mouse or presses a mouse button. The exact
action is identified by the following constants in the MouseEvent class:

• public static final int MOUSE_PRESSED
This event is delivered when a mouse button is pressed.

• public static final int MOUSE_RELEASED
This event is delivered when a mouse button is released.

• public static final int MOUSE_CLICKED
This event is delivered when a mouse button is pressed and released without any interven-
ing mouse dragging.

• public static final int MOUSE_DRAGGED
This event is delivered when the mouse is dragged, i.e. moved while a mouse button is
pressed.

• public static final int MOUSE_MOVED
This event is delivered when the mouse is moved without any mouse button pressed.

• public static final int MOUSE_ENTERED
This event is delivered when the mouse crosses the boundary of a component and enters it.

• public static final int MOUSE_EXITED
This event is delivered when the mouse crosses the boundary of a component and exits it.

The inherited getID() method returns the specific type of the event denoted by one of the con-
stants given above.
In addition, the inherited method getWhen() from the parent class InputEvent can be used
to get the time when the event took place.
These events are generated by the Component class and its subclasses.

CS211, Fall 1999. KAM GUI 32/67

MouseEvent
(cont.)

The MouseEvent class provides the following useful methods:

• public int getX()
• public int getY()
• public Point getPoint()
These methods can be used to get the x- and/or y-position of the event relative to the source
component. 

• public synchronized void translatePoint(int x, int y)
Translates the coordinate position of the event by x, y. 

• public int getClickCount()
Return the number of mouse clicks associated with the event. This is useful for detecting
such events as double clicks.



CS211, Fall 1999. KAM GUI 33/67

WindowEvent This event is generated when an important operation is performed on a window. These opera-
tions are identified by the following constants in the WindowEvent class:

• public static final int WINDOW_OPENED
This event is delivered only once for a window when it is created, opened and made visible
the first time.

• public static final int WINDOW_CLOSING
This event is delivered when the user action dictates that the window should be closed. The
application should explicitly call either setVisible(false) or dispose() on the
window because of this event.

• public static final int WINDOW_CLOSED
This event is delivered after the window has been closed as the result of a call to setVis-
ible(false) or dispose().

• public static final int WINDOW_ICONIFIED
This event is delivered when the window is iconified.

• public static final int WINDOW_DEICONIFIED
This event is delivered when the window is de-iconified.

• public static final int WINDOW_ACTIVATED
This event is delivered when the window is activated.

• public static final int WINDOW_DEACTIVATED
This event is delivered when the window is de-activated.

The inherited getID() method returns the specific type of the event denoted by one of the con-
stants given above.
These events are generated by the Window class and its subclasses.
The ComponentEvent class provides the following useful method:

• public Window getWindow()
This method returns the Window object that caused the event to be generated.

CS211, Fall 1999. KAM GUI 34/67

Components and Events

Component Event
Button ActionEvent

Checkbox ItemEvent

CheckboxMenuItem ItemEvent

Choice ItemEvent

List ActionEvent
ItemEvent

MenuItem ActionEvent

Scrollbar AdjustmentEvent

TextArea TextEvent

TextField ActionEvent
TextEvent

Component ComponentEvent
FocusEvent
KeyEvent
MouseEvent

Container ContainerEvent

Window WindowEvent

CS211, Fall 1999. KAM GUI 35/67

Event Delegation Model

GUI

user

A

Event X occurs

source

A source can generate different events and have several listeners.
Same listener can listen to different events from different sources.

listener

methodFromXListener(XEvent evt)

CS211, Fall 1999. KAM GUI 36/67

Setting up Sources and Listeners
• A source is an object which can generate events.

• A listener is an object which is interested in being informed when certain 
events occur.
– STEP 1: A listener must first register itself with the source(s) which can 

generate these events.

• Sources inform listeners when events occur, sending the necessary 
information about the events.

• A source of a particular event calls a special method in all the listeners 
registered for receiving notification about this event.
– STEP 2: The listener must guarantee that the method exists by 

undertaking to implement a listener interface for this event.

• Any object can be a listener as long as it implements the right interface 
(XListener) for the specific event (XEvent), and registers itself 
(addXListener()) with a source that generates this event.

Note that subclasses of a component can generate the same events as the superclass 
component because of inheritance.



CS211, Fall 1999. KAM GUI 37/67

Registering and Removing Listeners of Events 
Event Source Methods which the source 

provides to register and remove 
listeners who are interested in the 
event generated by the source.

Interface which a listener for a 
particular event must 
implement.

ComponentEvent Component addComponentListener
removeComponentListener

ComponentListener

ContainerEvent Container addContainerListener
removeContainerListener

ContainerListener

FocusEvent Component addFocusListener
removeFocusListener

FocusListener

KeyEvent Component addKeyListener
removeKeyListener

KeyListener

MouseEvent Component addMouseListener
removeMouseListener
addMouseMotionListener
removeMouseMotionListener

MouseListener

MouseMotionListener

WindowEvent Window addWindowListener
removeWindowListener

WindowListener

CS211, Fall 1999. KAM GUI 38/67

Registering and Removing Listeners of Events (cont.)

Event Source Methods which the source 
provides to register and remove 
listeners who are interested in 
the event generated by the 
source.

Interface which a 
listener for a particular 
event must implement.

ActionEvent Button
List
MenuItem
TextField

addActionListener
removeActionListener

ActionListener

AdjustmentEvent Scrollbar addAdjustmentListener
removeAdjustmentListener

AdjustmentListener

ItemEvent Choice
Checkbox
CheckboxMenuItem
List

addItemListener
removeItemListener

ItemListener

TextEvent TextArea
TextField

addTextListener
removeTextListener

TextListener

CS211, Fall 1999. KAM GUI 39/67

Listener Interfaces
Listener Interfaces Methods in listener interfaces

ComponentListener componentHidden(ComponentEvent e)

componentMoved(ComponentEvent e)

componentResized(ComponentEvent e)

componentShown(ComponentEvent e)

ContainerListener componentAdded(ContainerEvent e)

componentRemoved(ContainerEvent e)

FocusListener focusGained(FocusEvent e)

focusLost(FocusEvent e)

KeyListener keyPressed(KeyEvent e)

keyReleased(KeyEvent e)

keyTyped(KeyEvent e)

MouseListener mouseClicked(MouseEvent e)

mouseEntered(MouseEvent e)

mouseExited(MouseEvent e)

mousePressed(MouseEvent e)

mouseReleased(MouseEvent e)

CS211, Fall 1999. KAM GUI 40/67

Listener Interfaces (cont.)

Listener Interfaces Methods in listener interfaces

MouseMotionListener mouseDragged(MouseEvent e)

mouseMoved(MouseEvent e)

WindowListener windowActivated(WindowEvent e)

windowClosed(WindowEvent e)

windowClosing(WindowEvent e)

windowDeactivated(WindowEvent e)

windowDeiconified(WindowEvent e)

windowIconified(WindowEvent e)

windowOpened(WindowEvent e)

ActionListener actionPerformed(ActionEvent e)

AdjustmentListener adjustmentValueChanged(AdjustmentEvent e)

ItemListener itemStateChanged(ItemEvent e)

TextListener textValueChanged(TextEvent e)



CS211, Fall 1999. KAM GUI 41/67

Example One: Simple Event Handling
Application consists of a simple window which has a "Quit" button. The 
application terminates when the button is clicked.

:SimpleWindow quitButton:Button

quitter:QuitListener

addActionListener(quitter)

:SimpleWindow quitButton:Button

quitter:QuitListener

actionPerformed(ActionEvent e)

Listener Registration: 

Event Handling:

(listener)

(source)uses

uses

uses

uses

uses

uses

CS211, Fall 1999. KAM GUI 42/67

Steps to create a GUI based application:
      Button quitButton;
      QuitHandler quitter;

• Set up the GUI:
      // Create a button
      quitButton = new Button("Quit");

      // Set a layout manager, and add the button to the window.
      setLayout(new FlowLayout(FlowLayout.CENTER));
      add(quitButton);

• Register listener with the source:
– Create a listener:
quitter = new QuitListener(this);              // (1)

Note that we pass the window reference to the listener which has access to 
information from the window in order to handle the event.
– Register the listener (quitter) with the source (button quitButton):
quitButton.addActionListener(quitter);         // (2)

Note that the source (Button) generates ActionEvent when the button is 
clicked, so that we use the addActionListener method from the Button 
class to register the listener.

CS211, Fall 1999. KAM GUI 43/67

• Make sure that the listener implements the right XListener interface.
// Definition of the Listener
class QuitHandler implements ActionListener {                   // (3)

    private SimpleWindow application;    // The associated application

    public QuitHandler(SimpleWindow window) {
        application = window;
    }

    // Invoked when the user clicks the quit button.
    public void actionPerformed(ActionEvent evt) {              // (4)
        if (evt.getSource() == application.quitButton) {        // (5)
            System.out.println("Quitting the application.");
            application.dispose();                              // (6)
            System.exit(0);                                     // (7)
        }
    }
}

CS211, Fall 1999. KAM GUI 44/67

Example One: Simple Event Handling
/** A simple application to demonstrate the Event Delegation Model */
import java.awt.*;
import java.awt.event.*;

public class SimpleWindow extends Frame {

    Button quitButton;                   // The source
    QuitHandler quitter;                 // The listener

    public SimpleWindow() {

        // Create a window
        super("SimpleWindow");

        // Create one button
        quitButton = new Button("Quit");

        // Set a layout manager, and add the button to the window.
        setLayout(new FlowLayout(FlowLayout.CENTER));
        add(quitButton);

        // Create and add the listener to the button
        quitter = new QuitHandler(this);                    // (1)
        quitButton.addActionListener(quitter);              // (2)



CS211, Fall 1999. KAM GUI 45/67

        // Set the window size and pop it up.
        setSize(200,100);
        setVisible(true);
    }

    /** Create an instance of the application */
    public static void main(String args[]) { new SimpleWindow(); }

}

CS211, Fall 1999. KAM GUI 46/67

Example Two: Event Handling
Application terminates when the close button of the window is clicked.

:SimpleWindow

quitter:QuitListener

addWindowListener(quitter)

:SimpleWindow

quitter:QuitListener

Listener Registration: 

Event Handling:

uses

uses

uses

uses

windowClosing(WindowEvent e)
windowOpened(WindowEvent e)
windowIconified(WindowEvent e)
...

CS211, Fall 1999. KAM GUI 47/67

• Adding the extra functionality.

public class SimpleWindowTwo extends Frame {
    // ...
    QuitHandler quitter;             // The listener
    public SimpleWindowTwo() {
        // ...
        // Add the listener to the window
        addWindowListener(quitter);                         // (3)
        // ...
    }
    // ...
}

class QuitHandler implements ActionListener, WindowListener {   // (4)
    // ...
    // Terminate the application.
    private void terminate() {                                  // (5)
        System.out.println("Quitting the application.");
        application.dispose();
        System.exit(0);
    }

CS211, Fall 1999. KAM GUI 48/67

    // Invoked when the user clicks the close-box
    public void windowClosing(WindowEvent evt) {                // (6)
        terminate();
    }

    // Unused methods of the WindowListener interface.             (7)
    public void windowOpened(WindowEvent evt) {}
    public void windowIconified(WindowEvent evt) {}
    public void windowDeiconified(WindowEvent evt) {}
    public void windowDeactivated(WindowEvent evt) {}
    public void windowClosed(WindowEvent evt) {}
    public void windowActivated(WindowEvent evt) {}

}

• For a given event category, the listener receives notification of all the 
different types of events in the category represented by the methods of the 
corresponding listener interface.
– The listener QuitHandler implements the interface WindowListener 

which has seven methods. Some methods are just stubs.
– The listener QuitHandler receives notification of seven types of events 

typified by the methods of the WindowListener interface.



CS211, Fall 1999. KAM GUI 49/67

Example Two: Event Handling
/* SimpleWindowTwo: A simple setup for Event Delegation Model */
import java.awt.*;
import java.awt.event.*;

/** A simple application to demonstrate the Event Delegation Model */
public class SimpleWindowTwo extends Frame {

    Button quitButton;                   // The source
    QuitHandler quitter;             // The listener

    public SimpleWindowTwo() {

        // Create a window
        super("SimpleWindow");

        // Create one button
        quitButton = new Button("Quit");

        // Set a layout manager, and add the button to the window.
        setLayout(new FlowLayout(FlowLayout.CENTER));
        add(quitButton);

CS211, Fall 1999. KAM GUI 50/67

        // Create and add the listener to the button
        quitter = new QuitHandler(this);                    // (1)
        quitButton.addActionListener(quitter);              // (2)

        // Add the listener to the window
        addWindowListener(quitter);                         // (3)

        // Set the window size and pop it up.
        setSize(200,100);
        setVisible(true);
    }

    /** Create an instance of the application */
    public static void main(String args[]) { new SimpleWindowTwo(); }

}

CS211, Fall 1999. KAM GUI 51/67

// Definition of the Listener

class QuitHandler implements ActionListener, WindowListener {   // (4)

    private SimpleWindowTwo application; // The associated application

    public QuitHandler(SimpleWindowTwo window) {
        application = window;
    }

    // Terminate the application.
    private void terminate() {                                  // (5)
        System.out.println("Quitting the application.");
        application.dispose();
        System.exit(0);
    }

    // Invoked when the user clicks the quit button.
    public void actionPerformed(ActionEvent evt) {
        if (evt.getSource() == application.quitButton) {
            terminate();
        }
    }

CS211, Fall 1999. KAM GUI 52/67

    // Invoked when the user clicks the close-box
    public void windowClosing(WindowEvent evt) {                // (6)
        terminate();
    }

    // Unused methods of the WindowListener interface.             (7)
    public void windowOpened(WindowEvent evt) {}
    public void windowIconified(WindowEvent evt) {}
    public void windowDeiconified(WindowEvent evt) {}
    public void windowDeactivated(WindowEvent evt) {}
    public void windowClosed(WindowEvent evt) {}
    public void windowActivated(WindowEvent evt) {}
}



CS211, Fall 1999. KAM GUI 53/67

Event Listener Adapters
• Event listener adapters can be used to simplify implementation of event 

listeners.

• Such adapter classes provide a default implementation (which is just a stub) 
of the methods in a listener interface, so that a listener can extend an adapter 
and override the appropriate listener methods.

// Definition of the Listener
class QuitHandler extends WindowAdapter implements ActionListener { // (4)

    // ...

    // Overrides the appropriate interface method
    public void windowClosing(WindowEvent evt) {                // (6)
        terminate();
    }
}

Note that the QuitHandler class now cannot extend any other class.

CS211, Fall 1999. KAM GUI 54/67

Anonymous Classes
• An anonymous class is an inner class which is without a name.

• Anonymous classes combine the process of definition and instantiation into 
one step. 

• As these classes do not have a name, an instance of the class can only be 
created together with the definition. 

• Anonymous classes are defined at the location they are instantiated using 
additional syntax with the new operator.
– An object of such a class can access methods in its enclosing context.
– Note however that an anonymous class can access final local variables, 
final method-parameters and final catch-block parameters in the 
scope of the local context.

CS211, Fall 1999. KAM GUI 55/67

Extending an existing class

new <superclass name> (<optional argument list>)
{ <class body> }

• Optional arguments can be specified which are passed to the superclass 
constructor. 
– Thus the superclass must provide a corresponding non-default 

constructor if any arguments are passed. 
– An anonymous class cannot define constructors (as it does not have a 

name), an instance initializer can be used. 
–  <superclass name> is the name of the superclass extended by the 

anonymous class. 
– Note no extends-clause is used in the syntax.

class A {
    int a = 5;
    int b = 10;
    void print() {
        System.out.println(a);
    }
}
 

CS211, Fall 1999. KAM GUI 56/67

class AnonClassExample {
    // ...
    A extendA() { 
        return new A() { // (1)
            void print() {
                super.print();
                System.out.println(b);
            }
        };  
    }
 
    public static void main (String args[]){
        AnonClassExample e = new AnonClassExample();

 A a = e.extendA();
 a.print(); // (2)

    }
}

• Note that at (1) the anonymous class overrides the inherited method 
print() which is invoked at (2). 

• Usually it makes sense to either overrides methods from the superclass or 
implement abstract methods from the superclass.

• As references to an anonymous class cannot be declared, its functionality is 
only available through superclass references.



CS211, Fall 1999. KAM GUI 57/67

Implementing an interface

new <interface name> () { <class body> }

• An anonymous class provides a single interface implementation, and no 
arguments are passed. 
– The anonymous class implicitly extends the Object class. 
– Note that no implements-clause is used in the syntax. 
– A typical usage is implementing adapter classes.

// ...
Button b;

b.addActionListener( 
new ActionListener() { // (1)

public void actionPerformed(ActionEvent e) {
System.out.println("Action performed.");

}
}

);

CS211, Fall 1999. KAM GUI 58/67

Example: Listeners using Anonymous Classes

$1:SimpleWindowThree$1

:SimpleWindowThree

$2:SimpleWindowThree$2

quitButton:Button
addActionListener($1)

addWindowListener($2)

$1:SimpleWindowThree$1

:SimpleWindowThree

$2:SimpleWindowThree$2

quitButton:ButtonactionPe
rformed(

ActionEv
ent e)

windowClosing(WindowEvent evt)

Listener Registration: 

Event Handling:

CS211, Fall 1999. KAM GUI 59/67

Example: Listeners as Anonymous Classes
/*
   SimpleWindowThree: A simple setup for Event Delegation Model
   using Anonymous Classes.
 */
import java.awt.*;
import java.awt.event.*;

public class SimpleWindowThree extends Frame {

    Button quitButton;

    public SimpleWindowThree() {

        // Create a window
        super("SimpleWindowThree");

        // Create one button
        quitButton = new Button("Quit");

        // Set a layout manager, and add the button to the window.
        setLayout(new FlowLayout(FlowLayout.CENTER));
        add(quitButton);

CS211, Fall 1999. KAM GUI 60/67

        // Create and add the listener to the button
        quitButton.addActionListener(new ActionListener() {     // (1) $1
            // Invoked when the user clicks the quit button.
            public void actionPerformed(ActionEvent evt) {
                if (evt.getSource() == quitButton)
                    terminate();                                // (2)
            }
        });
        // Create and add the listener to the window
        addWindowListener(new WindowAdapter() {                 // (3) $2
            // Invoked when the user clicks the close-box.
            public void windowClosing(WindowEvent evt) {
                terminate();                                    // (4)
            }
        });
        // Set the window size and pop it up.
        setSize(200,100);
        setVisible(true);
    }
    private void terminate() {
        System.out.println("Quitting the application.");
        dispose();
        System.exit(0);
    }
    /** Create an instance of the application */
    public static void main(String args[]) { new SimpleWindowThree(); }
}



CS211, Fall 1999. KAM GUI 61/67

Programming Model for GUI-based Applications
The programming model comprises of three parts:

1. Construction of the GUI: component hierarchy and layout.

2. Registration of listeners with sources.

3. Listeners must implement the appropriate listener interfaces, i.e. actions to 
be performed when events occur.

CS211, Fall 1999. KAM GUI 62/67

Steps in developing a GUI Application
• Draw the GUI design first.

– Group components into panels, with a Frame object as root of the 
component hierarchy.

• For the root window, decide a layout manager.
– use the method setLayout(aLayoutManger) 

• For each panel, decide a layout manager.
– use the method setLayout(someOtherLayoutManger) 

• For each panel, add the relevant components to it.
– use the method add(guiComponent) 
– Add each child component to the parent container, and these containers 

to their parents upwards in the component hierarchy.

• Set up event handling:
– Add listeners to the sources using the addXListener(listener) method 

for handling XEvent.

• Set preferred size of the root window and make it (and rest of the 
component hierarchy) visible.
– use the method setSize(width, height) 
– use the method setVisible(true) 

CS211, Fall 1999. KAM GUI 63/67

Example: Modal Dialog Boxes

• When the user clicks on the "Read an Integer" button in the main window 
(a), a input window (b) is created to read the number.

• The input window to read the number is modal, so that the user cannot 
access other windows while this window is showing.

• Data validation: value read must be checked to ensure that only a valid 
integer is registered.

• Clicking the Ok button in the input window results in the value being 
validated, and only if it is legal, it is passed to the main window and then 
only the input window is closed.

• The user can close the input window by clicking the close box, but then no 
value is passed to the main window.

(a) Main window before reading an integer (c) Main window after reading an integer
(b) Input window to read an integer

CS211, Fall 1999. KAM GUI 64/67

Example: Modal Dialog Boxes (cont.)

// "Modal" dialog boxes.
import java.awt.*;
import java.awt.event.*;
import java.util.*;

public class ModalDialogDemo extends Frame 
          implements ActionListener {

    private Button intButton;
    private TextField intTF;

    ModalDialogDemo() {

        super("ModalDialogDemo");
        intTF = new TextField("0", 10);
        intTF.setEditable(false);
        intButton = new Button("Read an Integer");

        setLayout(new FlowLayout());
        add(intTF);
        add(intButton);

        intButton.addActionListener(this);
 

Setup the main window.

Implements listener interface.

Register window as listener with button.



CS211, Fall 1999. KAM GUI 65/67

Example: Modal Dialog Boxes (cont.)
        addWindowListener( new WindowAdapter() {
            public void windowClosing(WindowEvent ev) {
                terminate();
            }
        });

        setSize(200, 100);
        setVisible(true);
    }
    public void setInteger(String str) {
        intTF.setText(str);
    }
    public void terminate() {
        setVisible(false);
        dispose();
        System.exit(0);
    }
    public void actionPerformed(ActionEvent e) {
        new IntegerInputDialog(this);
    }

    public static void main(String args[]) { new ModalDialogDemo(); }

} // end class ModalDialogDemo

Register listener for closing the window.

Create a Dialog-window with the main 
window as parent.

CS211, Fall 1999. KAM GUI 66/67

Example: Dialog boxes (cont.)

class IntegerInputDialog extends Dialog {

    ModalDialogDemo app;    
    private TextField intTF;
    private Button okButton;

    IntegerInputDialog(ModalDialogDemo f) {

        super (f, "IntegerDialogBox", true);
        app = f;
        // GUI
        okButton = new Button("OK");
        intTF = new TextField(20);
        intTF.setEditable(true);
        add(intTF, BorderLayout.NORTH);
        add(okButton, BorderLayout.SOUTH);
        // Listeners
        okButton.addActionListener(new ActionListener() { 
            public void actionPerformed(ActionEvent ev) {
                if (isLegalInteger(intTF)) {
                    app.setInteger(intTF.getText());
                    removeDialogBox();
                }
            }
        });

Constructor must have parent.

Setup for Dialog window.

Register listeners with sources.

CS211, Fall 1999. KAM GUI 67/67

Example: Dialog boxes (cont.)

        addWindowListener( new WindowAdapter() {
            public void windowClosing(WindowEvent ev) {
                removeDialogBox();
            }
        });

        setSize(200, 100);
        setVisible(true);
    }

    public boolean isLegalInteger(TextField tf) {
        try { Integer.parseInt(tf.getText()); }
        catch (NumberFormatException ex) { return false; }
        return true;
    }

    public void removeDialogBox() {
        setVisible(false);
        dispose();
    }
}

Necessary to free the resources.

Data Validation

Necessary for making the window visible.

Register listener for closing the window.


