
18 – More Package Management, and some
distros
CS 2043: Unix Tools and Scripting, Spring 2019 [1]

Matthew Milano
March 6, 2019

Cornell University

1

Table of Contents

1. Homebrew time

2. Other Managers

3. Demo: the language-specific package managers I have
installed.

4. Choosing a Linux Distro, revisited

2

Homebrew time

OSX Package Management: Install brew on your own

• Sitting in class right now with a Mac?
• DON’T DO THIS IN CLASS. You will want to make sure you do
not have to interrupt the process.

• Make sure you have the “Command Line Tools” installed.

• Instructions are on the First Things First Config Page

• Visit http://brew.sh/
• Copy-paste the given instructions in the terminal as a regular
user (not root!).

• VERY IMPORTANT: READ WHAT THE OUTPUT IS!!!! It will tell you
to do things, and you have to do them. Specifically
You should run 'brew doctor' BEFORE you install anything.

3

https://cs2043-sp17.github.io/configurations.html
http://brew.sh/

OSX Package Management (brew)

• Installing and uninstalling:
• Install a formula:
brew install <fmla1> <fmla2> ... <fmla2>

• Remove a formula:
brew uninstall <fmla1> <fmla2> ... <fmlaN>

• Only one fmla required, but can specify many.
• “Group” packages have no meaning in brew.

• Updating components:
• Update brew, all taps, and installed formulae listings. This does
not update the actual software you have installed with brew,
just the definitions: brew update.

• Update just installed formulae: brew upgrade.
• Specify a formula name to only upgrade that formula.

• Searching for packages:
• Same command: brew search <formula> 4

OSX: One of These Kids is Not Like the Others (Part I)

• Safe: confines itself (by default) in /usr/local/Cellar:
• common feature of “non-system” package managers
• No sudo, plays nicely with OSX (e.g. Applications, python3).
• Non-linking by default. If a conflict is detected, it will tell you.
• Really important to read what brew tells you!!!

• brew is modular. Additional repositories (“taps”) available:
• This concept exists for all package managers

• Common taps people use:
• brew tap homebrew/science

• Various “scientific computing” tools, e.g. opencv.
• brew tap caskroom/cask

• Install .app applications! Safe: installs in the “Cellar”, symlinks
to ~/Applications, but now these update with brew all on
their own when you brew update!

• E.g. brew cask install vlc 5

OSX: One of These Kids is Not Like the Others (Part II)

• brew installs formulas.
• A ruby script that provides rules for where to download
something from / how to compile it. Similar concept to
portage’s bash files

• Sometimes the packager creates a “Bottle”:
• If a bottle for your version of OSX exists, you don’t have to
compile locally.

• The bottle just gets downloaded and then “poured”.

• Otherwise, brew downloads the source and compiles locally.
• Though more time consuming, can be quite convenient!

• brew options opencv
• brew install --with-cuda --c++11 opencv
• It really really really is magical. Just like USE flags in Gentoo!
• brew reinstall --with-missed-option formula

6

http://docs.brew.sh/Bottles.html

OSX: One of These Kids is Not Like the Others (Part III)

• Reiteration: pay attention to brew and what it says. Seriously.
• Example: after installing opencv, it tells me:
==> Caveats
Python modules have been installed and Homebrews site-packages
is not in your Python sys.path, so you will not be able to
import the modules this formula installed. If you plan to
develop with these modules, please run:

mkdir -p /Users/sven/.local/lib/python2.7/site-packages
echo 'import site; site.addsitedir(\

"/usr/local/lib/python2.7/site-packages")' >> \
/Users/sven/.local/lib/python2.7/site-packages/homebrew.pth

• brew gives copy-paste format, above is just so you can read.
• I want to use opencv in Python, so I do what brew tells me.

7

Language-specific package management

• Modern programming language environments have their own
package managers

• Haskell: cabal
• Ocaml: opam
• Python: conda/pip/pip3
• Ruby: bundler / gem
• Rust: cargo

• Works basically exactly like brew
• separate, user-specific install directory
• preferred to system packages but does not replace them

• Be careful when using these!
• system packages are not preferred, but sometimes get used
anyway

• when languages rely on external packages, things get really
hairy 8

Other Managers

Like What?

• There are so many package managers out there for different
things, too many to list them all!

• Ruby: gem
• Anaconda Python: conda
• Python: pip
• Python: easy_install (but really, just use pip)
• Python3: pip3
• LaTeX: tlmgr (uses the CTAN database)

• Must install TeX from source to get tlmgr

• Perl: cpan
• Sublime Text: Package Control
• Many many others…

9

https://rubygems.org/
https://conda.io/docs/intro.html
https://pip.pypa.io/en/stable/
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://www.tug.org/texlive/tlmgr.html
https://www.cpan.org/
https://packagecontrol.io/installation

Like How?

• Some notes and warnings about Python package management.
• Notes:

• If you want X in Python 2 and 3:
• pip install X and pip3 install X

• OSX Specifically: advise only using brew or Anaconda Python.
The system Python can get really damaged if you modify it, you
are better off leaving it alone.

• So even if you want to use python2 on Mac, I strongly
encourage you to install it with brew.

• Warnings:
• Don’t mix easy_install and pip. Choose one, stick with it.

• But the internet told me if I want pip on Mac, I should
easy_install pip

• NO! Because this pip will modify your system python, USE BREW.
• Don’t mix pip with conda. If you have Anaconda python, just
stick to using conda.

10

Concepts in language-specific (per-user) package management

• Packages do not require root to install
• Packages installed to per-user directory

• normall a “dotfile” directory in your home
• better-behaved things in ~/.local/share

• need to change your environment variables to use correctly
• usually at least $PATH and $LD_LIBRARY_PATH
• sometimes also $JAVA_HOME, $PYTHON_PATH‘, etc

• can control selection of package managers with edits to $PATH

11

Demo: the language-specific
package managers I have installed.

Choosing a Linux Distro, revisited

What is a linux distro?

• Custom combination of
• kernel version,
• default shell
• package manager
• graphical interface

• there are TOO MANY of these
• open source: anyone can make one

• Most of the differences between distros are cosmetic
• Only very few “families” of distros with serious and important
differences

12

What to consider when choosing a distro

• familiarity
• how much of a learning curve will this be for me?

• popularity
• how likely am I to find people on the internet who’ve seen my
problems?

• community
• Linux is very user-supported. How nice people on the internet
are matters for your daily life.

• Want to find a community where you feel supported and
welcome

• different distros are popular with different languages

• your use case
• why do you want linux?
• how often do you need or want bleeding-edge stuff?
• what programs need to work for you? 13

Evaluating familiarity

• Package manager is most important
• Ubuntu from debian family (uses .deb)
• Fedora from RedHat family (uses .rpm)
• distros will tell you where they’re from

• desktop environment is second-most important
• Rest of it doesn’t matter too much.

14

More about desktop environments

• Refers to “Graphical Shell” – the actual graphical part of the OS
• Windows Explorer is the Windows Desktop Environment
• Cocoa was the Mac Desktop environment (I think they changed
that now?)

• Most important part of your daily computer experience
• Defines the look and feel of your OS
• Lots and lots of alternatives out there
• We’ll look at these at the end of lecture (and maybe next time
too)

15

Evaluating popularity

• distrowatch.com
• Check their forums and website
• ask your friends
• look in the windows store (no really)

16

www.distrowatch.com

Evaluating community

• Read through random forum posts, especially of the “how do I
install it” variety

• go on IRC (or whatever has replaced it) for the distro
• really old chat service
• basically only used for linux user support

• Check the wikis or other user-contribute items

17

Your use case

• Need stability and easy access to a terminal?
• Maybe MacOS terminal / Windows Subsystem for Linux are
good enough

• Need stability, terminal, and linux-specific hardware or
graphics management?

• Ubuntu and Debian
• there are lots of distros based on one of these
• they’re all basically just as good as the next – differences are in
customization, not essential

• Need serious security?
• Linux in general is very secure
• if you’re very invested in security, find a security-focused distro

18

Your use case

• Need access to bleeding-edge software without upgrading
your system?

• docker might be good enough for you
• if not, consider a rolling-release distro
• can also consider a “bleeding” distro that emphasizes early
package access

• Want to seriously get into the internals of your
distro/customize packages?

• Gentoo or Arch, or something based on those.

19

References

[1] Stephen McDowell, Bruno Abrahao, Hussam Abu-Libdeh,
Nicolas Savva, David Slater, and others over the years.
“Previous Cornell CS 2043 Course Slides”.

20

	Homebrew time
	Other Managers
	Demo: the language-specific package managers I have installed.
	Choosing a Linux Distro, revisited

