
15 – Networking and Package Management
CS 2043: Unix Tools and Scripting, Spring 2019 [1]

Matthew Milano
February 27, 2019

Cornell University

1

Table of Contents

1. welcome back to THE INTERNET

2. Package Management

3. System Specific Package Managers

4. Other Managers

2

Virtual Machines
CS2043 - Spring 2019
February 27

The image above is a link. Click it.

3

https://docs.google.com/presentation/d/102wv9msyDwe0ttJAWT_swQ6BzD2AfH9OpXylxmLopks/edit#slide=id.p

welcome back to THE INTERNET

Command we forgot from last time

ping a packet off a remote host
ping [flags...] <host>

- Simple echo back-and-forth
- tests connections
- uses ICMP protocol – same as traceroute
- runs forever by default

$ ping -c 4 google.com
PING google.com (172.217.9.238) 56(84) bytes of data.
64 bytes from lga34s11-in-f14.1e100.net (172.217.9.238): icmp_seq=1 ttl=55 time=8.24 ms
64 bytes from lga34s11-in-f14.1e100.net (172.217.9.238): icmp_seq=2 ttl=55 time=8.51 ms
64 bytes from lga34s11-in-f14.1e100.net (172.217.9.238): icmp_seq=3 ttl=55 time=8.56 ms
64 bytes from lga34s11-in-f14.1e100.net (172.217.9.238): icmp_seq=4 ttl=55 time=8.56 ms

--- google.com ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 8ms
rtt min/avg/max/mdev = 8.237/8.468/8.563/0.163 ms

4

Last time

• Computers communicate by sending packets through the
network

• Packets are addressed to a local MAC and a potentially-remote
IP

• Switches connect computers into a local network and forward
packets by MAC

• Routers connect local networks into an intranet and forward
packets by IP

5

Protocols from last time

• The DHCP protocol gives computers an IP address
• The ARP protocol associates an IP address with a MAC address
• The DNS protocol associates a domain name (google.com) with
a MAC address

6

What is a protocol?

• an agreement on what sort of packets to exchange to achieve
a particular goal

• Can be multi-step
• we distinguish between transport layer and application layer

7

More about protocols: transport layer

• transport-layer protocols correspond to different “kinds” of
packets

• examples: ARP, ICMP

• Operating system sees the different packets, handles them
accordingly

• operating system’s job to handle transport-layer packets

8

More about protocols: application layer

• application-layer protocols use the same kind of packet
• examples: DHCP, DNS, HTTPS, SSH, most others you know

• Operating system passes them to applications
• How do applications find their packets?

9

Introducing: TCP and UDP

• transport-layer protocols for communicating with applications
• differentiate applications with “ports”

• just a 16-bit integer
• like apartment numbers

• applications listen at a specific port
• registers with the OS
• OS only forwards port-destined traffic

• contains “return addresses” for easy reply to client

10

TCP

• Most popular transport protocol
• examples: HTTP, SSH

• connection-oriented protocol
• “connect” to a port on a remote stream
• receive a private channel on which to keep communicating
• like a phone call … or SSH session

• Hides common failures
• ensures packets are reasonably ordered
• retransmits packets if they get lost
• cool algorithm to avoid congestion

11

UDP

• Second-most popular transport protcol
• examples: DHCP, DNS, VoIP, Steam (as in video games), internet
radio

• not netflix
• only gives you the port

• no connection: works like physical mail.

• All common failures exposed to application
• packet order may vary
• packets may not arrive
• no indication whether transmitted packet got there

• Mostly used in either very-old, high-assurance or real-time
applications

• more resilient to DOS attacks than TCP

12

Application protocols

• Still defines pattern of communication
• specific messages expected at specific times
• messages sent via (usually) TCP/UDP
• Example: HTTP, SSH, etc.

13

Exploring application protocols: netcat

netcat : so much more than cat over the network
nc [flags] [host]
nc -l -p <port>
nc <host> <port>

- Raw TCP protocol tool
- sends stdin over the network
- receives stdout from the network
- nc -l “listens”, behaves like a server
- nc <host> “connects”, behaves like a client

14

HTTP: a protocol to explore

• HTTP messages are raw text!
• Strings sent via TCP to port 80
• GET request: access a page

GET /people/mpmilano/ HTTP/1.1
Host: cs.brown.edu

• Let’s send this via netcat! (demo)
• Can explore more protocols this way; try it!

15

Some common ports

• HTTP: TCP/80
• SSH: TCP/22
• FTP: TCP/20 and TCP/21
• HTTPS: TCP/443
• SMTP (mail): TCP/25

16

Firewalls

• In a perfect world, we wouldn’t need a firewall.
• Lives in the network, or in the kernel
• inspects traffic before it reaches its destination
• Two primary uses: filter legitimate services, block unwanted
ones

17

Firewalls: the good uses

• Legit: Filters certain ports to prevent regions of the internet
from accessing them

• Cornell firewall drops all traffic destined to on-campus servers
originating from off-campus IPs

• wash firewall does the same
• mail relay firewall would only allow known senders to connect

• prevents server from being overloaded by random external
griefers

• prevents aggressive server scans from the darkweb
• which, by the way, exists. ask me later.

18

Firewalls: the lazy uses.

• Block insecure / old apps
• cover up for weird/bad OS/system design

• Example: print server on a mac at port 631
• Example: just a lot of windows

• Block all uninvited remote connections
• if your laptop isn’t a server, shouldn’t have exposed ports
• if it does have exposed ports, some application is doing a bad.

• Fundamentally lazy: right answer is to secure the applications,
not hide them.

• lots of legacy apps (that we’re stuck with) can’t be fixed, so
also fundamentally necessary

19

Package Management

Package Management Overview

• If I had to give only one reason why Unix systems are superior
to Windows: Package Management.

• Can install almost anything with ease of from your terminal.
• Update to the latest version with one command.

• No more download the latest installer nonsense!

• Various tools can be installed by installing a package.
• A package contains the files and other instructions to setup a
piece of software.

• Many packages depend on each other.
• High-level package managers download packages, figure out
the dependencies for you, and deal with groups of packages.

• Low-level managers unpack individual packages, run scripts,
and get the software installed correctly.

• In general, these are “pre-compiled binaries”: no compilation
necessary. It’s already packaged nice and neat just for you! 20

Package Managers in the Wild

• GNU/Linux:
• Low-level: two general families of packages exist: deb, and rpm.
• High-level package managers you are likely to encounter:

• Debian/Ubuntu: apt-get.
• Some claim that aptitude is superior, but I will only cover
apt-get. They are roughly interchangeable.

• SUSE/OpenSUSE: zypper.
• Fedora: dnf (Fedora 22+).
• zypper and dnf use SAT-based dependency solvers, which
many argue is fundamentally superior. The dependency
resolution phase is usually not the slowest part
though…installing the packages is. See [3] for more info.

• RHEL/CentOS: yum (until they adopt dnf).

• Mac OSX:
• Others exist, but the only one you should ever use is brew.
• Don’t user others (e.g. port), they are outdated / EOSL. 21

Using Package Managers

• Though the syntax for each package manager is different, the
concepts are all the same.

• This lecture will focus on apt-get, dnf, and brew.
• The dnf commands are almost entirely interchangeable with
yum, by design.

• Note that brew is a “special snowflake”, more on this later.

• What does your package manager give you? The ability to
• install new packages you do not have.
• remove packages you have installed.
• update installed packages.
• update the lists to search for files / updates from.
• view dependencies of a given package.
• a whole lot more!!!

22

A Note on update

• The update command has importantly different meanings in
different package managers.

• Some do, and some do not default to system (read linux
kernel) updates.

• Ubuntu: default is no.
• Fedora: default is yes.
• RHEL: default is no.

• It depends on your operating system, and package manager.
• Know your operating system, and look up what the default
behavior is.

• If your program needs a specific version of the linux kernel,
you need to be very careful!

23

A Note on Names and their Meanings

• You may see packages of the form:
• <package>.i[3456]86 (e.g. .i386 or .i686):

• These are the 32-bit packages.
• <package>.x86_64: these are the 64-bit packages.
• <package>.noarch: these are independent of the
architecture.

• Development tools can have as many as three packages:
• The header files are usually called something like:

• deb: usually <package>-dev
• rpm: usually <package>-devel

• The library you will need to link against:
• If applicable, lib<package> or something similar.

• The binaries (executables), often provided by just <package>.
• Most relevant for C and C++, but also Python and others.
• Use the search functionality of your package manager. 24

Example Development Tool Installation

• If I needed to compile and link against Xrandr (X.Org X11
libXrandr runtime library) pn Fedora, I would have to install

• libXrandr: the library.
• libXrandr-devel: the header files.
• Not including .x86_64 is OK / encouraged, your package
manager knows which one to install.

• Though in certain special cases you may need to get the
32-bit library as well.

• In this case, if I were compiling a program that links against
libXrandr, but I want to release a pre-compiled 32bit library, it
must be installed in order for me to link against it.

• The deb versions should be similarly named, but just use the
search functionality of find the right names.

• This concept has no meaning for brew, since it compiles
everything. 25

System Specific Package Managers

Debian / Ubuntu Package Management (apt-get)

• Installing and uninstalling:
• Install a package:
apt-get install <pkg1> <pkg2> ... <pkgN>

• Remove a package:
apt-get remove <pkg1> <pkg2> ... <pkgN>

• Only one pkg required, but can specify many.
• “Group” packages are available, but still the same command.

• Updating components:
• Update lists of packages available: apt-get update.

• No arguments, it updates the whole list (even if you give args).
• Updating currently installed packages: apt-get upgrade.

• Specify a package name to only update / upgrade that package.
• Update core (incl. kernel): apt-get dist-upgrade.

• Searching for packages:
• Different command: apt-cache search <pkg> 26

RHEL / Fedora Package Managers (yum and dnf)

• Installing and uninstalling:
• Install a package:
dnf install <pkg1> <pkg2> ... <pkgN>

• Remove a package:
dnf remove <pkg1> <pkg2> ... <pkgN>

• Only one pkg required, but can specify many.
• “Group” packages are available, but different command:

• dnf groupinstall 'Package Group Name'
• Updating components:

• Update EVERYTHING: dnf upgrade.
• update exists, but is essentially upgrade.

• Specify a package name to only upgrade that package.
• Updating repository lists: dnf check-update

• Searching for packages:
• Same command: dnf search <pkg>

• yum and dnf (Dandified Yum) nearly interchangeable: [3]. 27

dnf: Cautionary Tales

• WARNING: if you install package Y, which installs X as a
dependency, and later remove Y

• By default, X will be removed!
• Refer to [2] for workarounds.
• Generally, won’t know you needed to mark until it is too late.

• Solution?
• Basically, pay attention to your package manager.
• It gets removed because nothing explicitly depends on it.
• So one day you may realize “OH NO! I’m missing package X”…
• …so just dnf install X.

• So while mark is available, personally I don’t use it.

• Sad face, I know. Just the way of the world.

28

OSX Package Management: Install brew on your own

• Sitting in class right now with a Mac?
• DON’T DO THIS IN CLASS. You will want to make sure you do
not have to interrupt the process.

• Make sure you have the “Command Line Tools” installed.

• Instructions are on the First Things First Config Page

• Visit http://brew.sh/
• Copy-paste the given instructions in the terminal as a regular
user (not root!).

• VERY IMPORTANT: READ WHAT THE OUTPUT IS!!!! It will tell you
to do things, and you have to do them. Specifically
You should run 'brew doctor' BEFORE you install anything.

29

https://cs2043-sp17.github.io/configurations.html
http://brew.sh/

OSX Package Management (brew)

• Installing and uninstalling:
• Install a formula:
brew install <fmla1> <fmla2> ... <fmla2>

• Remove a formula:
brew uninstall <fmla1> <fmla2> ... <fmlaN>

• Only one fmla required, but can specify many.
• “Group” packages have no meaning in brew.

• Updating components:
• Update brew, all taps, and installed formulae listings. This does
not update the actual software you have installed with brew,
just the definitions: brew update.

• Update just installed formulae: brew upgrade.
• Specify a formula name to only upgrade that formula.

• Searching for packages:
• Same command: brew search <formula> 30

OSX: One of These Kids is Not Like the Others (Part I)

• Safe: confines itself (by default) in /usr/local/Cellar:
• No sudo, plays nicely with OSX (e.g. Applications, python3).
• Non-linking by default. If a conflict is detected, it will tell you.
• Really important to read what brew tells you!!!

• brew is modular. Additional repositories (“taps”) available:
• Essentially what a .rpm or .deb would give you in linux.
• These are 3rd party repos, not officially sanctioned by brew.

• Common taps people use:
• brew tap homebrew/science

• Various “scientific computing” tools, e.g. opencv.
• brew tap caskroom/cask

• Install .app applications! Safe: installs in the “Cellar”, symlinks
to ~/Applications, but now these update with brew all on
their own when you brew update!

• E.g. brew cask install vlc 31

OSX: One of These Kids is Not Like the Others (Part II)

• brew installs formulas.
• A ruby script that provides rules for where to download
something from / how to compile it.

• Sometimes the packager creates a “Bottle”:
• If a bottle for your version of OSX exists, you don’t have to
compile locally.

• The bottle just gets downloaded and then “poured”.

• Otherwise, brew downloads the source and compiles locally.
• Though more time consuming, can be quite convenient!

• brew options opencv
• brew install --with-cuda --c++11 opencv
• It really really really is magical. No need to understand the
opencv build flags, because the authors of the brew formula
are kind and wonderful people.

• brew reinstall --with-missed-option formula 32

http://docs.brew.sh/Bottles.html

OSX: One of These Kids is Not Like the Others (Part III)

• Reiteration: pay attention to brew and what it says. Seriously.
• Example: after installing opencv, it tells me:
==> Caveats
Python modules have been installed and Homebrews site-packages
is not in your Python sys.path, so you will not be able to
import the modules this formula installed. If you plan to
develop with these modules, please run:

mkdir -p /Users/sven/.local/lib/python2.7/site-packages
echo 'import site; site.addsitedir(\

"/usr/local/lib/python2.7/site-packages")' >> \
/Users/sven/.local/lib/python2.7/site-packages/homebrew.pth

• brew gives copy-paste format, above is just so you can read.
• I want to use opencv in Python, so I do what brew tells me.

33

Less Common Package Management Operations

• Sometimes when dependencies are installed behind the
scenes, and you no longer need them, you will want to get rid
of them.

• apt-get autoremove
• dnf autoremove
• brew doctor

• View the list of repositories being checked:
• apt-cache policy (well, sort of…apt doesn’t have it)
• dnf repolist [enabled|disabled|all]

• Some repositories for dnf are disabled by default (with good
reason). Usually you want to just
dnf --enablerepo=<name> install <thing>
e.g. if you have rawhide (development branch for fedora).

• brew tap

34

Other Managers

Like What?

• There are so many package managers out there for different
things, too many to list them all!

• Ruby: gem
• Anaconda Python: conda
• Python: pip
• Python: easy_install (but really, just use pip)
• Python3: pip3
• LaTeX: tlmgr (uses the CTAN database)

• Must install TeX from source to get tlmgr

• Perl: cpan
• Sublime Text: Package Control
• Many many others…

35

https://rubygems.org/
https://conda.io/docs/intro.html
https://pip.pypa.io/en/stable/
https://setuptools.readthedocs.io/en/latest/easy_install.html
https://www.tug.org/texlive/tlmgr.html
https://www.cpan.org/
https://packagecontrol.io/installation

Like How?

• Some notes and warnings about Python package management.
• Notes:

• If you want X in Python 2 and 3:
• pip install X and pip3 install X

• OSX Specifically: advise only using brew or Anaconda Python.
The system Python can get really damaged if you modify it, you
are better off leaving it alone.

• So even if you want to use python2 on Mac, I strongly
encourage you to install it with brew.

• Warnings:
• Don’t mix easy_install and pip. Choose one, stick with it.

• But the internet told me if I want pip on Mac, I should
easy_install pip

• NO! Because this pip will modify your system python, USE BREW.
• Don’t mix pip with conda. If you have Anaconda python, just
stick to using conda.

36

References

[1] Stephen McDowell, Bruno Abrahao, Hussam Abu-Libdeh,
Nicolas Savva, David Slater, and others over the years.
“Previous Cornell CS 2043 Course Slides”.

[2] Reddit.com. DNF Remove Package, keep dependencies??
2016. url: https://www.reddit.com/r/Fedora/comments/
3pqrv9/dnf_remove_package_keep_dependencies/.

[3] Jack Wallen. What You Need to Know About Fedora’s
Switch From Yum to DNF. 2015. url:
https://www.linux.com/learn/tutorials/838176-what-you-
need-to-know-about-fedoras-switch-from-yum-to-dnf.

37

https://www.reddit.com/r/Fedora/comments/3pqrv9/dnf_remove_package_keep_dependencies/
https://www.reddit.com/r/Fedora/comments/3pqrv9/dnf_remove_package_keep_dependencies/
https://www.linux.com/learn/tutorials/838176-what-you-need-to-know-about-fedoras-switch-from-yum-to-dnf
https://www.linux.com/learn/tutorials/838176-what-you-need-to-know-about-fedoras-switch-from-yum-to-dnf

	welcome back to THE INTERNET
	Package Management
	System Specific Package Managers
	Other Managers

