
10 – Sed, cut, and paste
CS 2043: Unix Tools and Scripting, Spring 2019 [1]

Matthew Milano
February 13, 2019

Cornell University

1

Table of Contents

1. Cutting

2. The Stream Editor (sed)

3. Interlude: xargs and shift

4. Pasting

5. Splitting and Joining

2

As always: Everybody! ssh to wash.cs.cornell.edu

• Quiz time! Everybody! run quiz-02-13-19
• You can just explain a concept from last class, doesn’t have to
be a command this time.

3

Cutting

Chopping up Input

cut out sections of input (filtering)
cut <options> [file]
- Must specify list of bytes (-b), characters (-c), or fields (-f).
- The file is optional, uses stdin if unspecified.

N Only 𝑁 th byte, character, or field, counted from
1.

N- 𝑁 th byte, character, or field, to end of line.
M-N 𝑀 th to 𝑁 th (inclusive) byte, character, or field.
-N First to 𝑁 th (inclusive) byte, character, or field.

M,N,..,X Extract individual items (1,4,6: first, fourth,
and sixth bytes, characters, or fields).

- E.g., -b 2 is “2nd byte”, -f 3- is “3rd field to end of line”.
- Use -d to specify a delimiter (TAB by default).

- E.g., echo 'a:b:c:d' | cut -d : -f 2 ⟹ b

- Use -s to suppress line if delimiter not found.

4

cut Examples

employees.csv
Alice,female,607-123-4567,11 Sunny Place,Ithaca,NY,14850
Bob,male,607-765-4321,1892 Rim Trail,Ithaca,NY,14850
Andy,n/a,607-706-6007,1 To Rule Them All,Ithaca,NY,14850
Bad employee data without proper delimiter

• /course/cs2043/demos/10-demos/employees.csv
• Get names, ignore improper lines:
$ cut -d , -f 1 -s employees.csv

• Get names and phone numbers, ignore improper lines:
$ cut -d , -f 1,3 -s employees.csv

• Get address (4th col and after), ignore improper lines:
$ cut -d , -f 4- -s employees.csv

5

The Stream Editor (sed)

Introducing…
The Stream Editor
sed [options] [script] [file]

- Stream editor for filtering and transforming text.
- If no file provided, stdin is used.
- We will focus on sed’s 's/<regex>/<replacement>/':

- Replace anything matching <regex> with <replacement>.
- E.g., echo 'hello' | sed 's/lo/p!/' ⟹ help!

- sed goes line by line searching for the regular expression.
- Only covering basics, sed is a full programming language.
- Main difference between sed and tr for scripting?

- sed can match regular expressions, and perform captures!

- Extended regular expressions: use the -E flag (not -r).
- GNU sed supports both -r and -E, BSD sed only -E.

- See examples for more.
6

http://blog.dmitryleskov.com/small-hacks/mysterious-gnu-sed-option-e/

A Basic Example

• Luke, there is no spoon (demo file no_spoon.txt).
$ head -1 no_spoon.txt
There is no spoon. There is no spoon. There is no spoon. There is no spoon.

$ sed 's/no spoon/a fork/g' no_spoon.txt
There is a fork. There is a fork. There is a fork. There is a fork.
...
There is a fork. There is a fork. There is a fork. There is a fork.

• Replaces no spoon with a fork for every line.
• No ending /g? Only one substitution per line:

$ sed 's/no spoon/a fork/' no_spoon.txt
There is a fork. There is no spoon. There is no spoon. There is no spoon.
...
There is a fork. There is no spoon. There is no spoon. There is no spoon.

• Caution: get in habit of using single-quotes for with sed.
• Otherwise special shell characters (like *) may expand in
double-quotes causing you sadness and pain.

7

https://github.com/cs2043-sp17/lecture-demos/tree/master/lec10/sed

Deletion

• Delete all lines that contain regex: sed '/regex/d'
david.txt
Hi, my name is david.
Hi, my name is DAVID.
Hi, my name is David.
Hi, my name is dAVID.

• Delete all lines in demo file david.txt matching [Dd]avid:
$ sed '/[Dd]avid/d' david.txt
Hi, my name is DAVID.
Hi, my name is dAVID.

• To delete pattern per-line, just do an empty replacement:
$ sed 's/[]\?[Dd][Aa][Vv][Ii][Dd].//g' david.txt
Hi, my name is
Hi, my name is
Hi, my name is
Hi, my name is

8

https://github.com/cs2043-sp17/lecture-demos/tree/master/lec10/sed

Regular Expressions

• What does this REMOVED from demo file data.txt?
$ sed 's/[a-zA-Z]\{1,3\}[0-9]*@cornell\.edu/REMOVED/g' data.txt

• Only removes netID@cornell.edu emails, not the others!
• The \{1,3\}.{bash} specifies a number of occurrences

• “Regular” regex: escape specials ((parens), {braces}, etc.).
$ sed 's/[[:alnum:]]\{1,11\}@/REMOVED@/g' data.txt

• We have to escape the curly braces: \{1,11\}

• “Extended” regex (using -E flag): escaping rules reversed!
$ sed -E 's/[[:alnum:]]\{1,11\}@/REMOVED@/g' data.txt

• No replacements, \{1,11\} now means literal string {1,11}.
$ sed -E 's/[[:alnum:]]{1,11}@/REMOVED@/g' data.txt

• Works! \{1,11\} ⟹ {1,11}

9

https://github.com/cs2043-sp17/lecture-demos/tree/master/lec10/sed

Capture Groups

• Like most regular expressions, (parens) form capture groups.
• You can use the capture groups in the replacement text.

• If you have one capture group: \1 in replacement text.
• Two groups? \1 and \2 are available in replacement text.

• A contrived example:
$ echo 'hello world' | \

sed 's/\(hello\) \(world\)/\2 say \1 back/'
world say hello back

• And using regular expressions?
$ echo 'I have a spoon.' | \

sed -E 's/([a-z]+)\./super shiny silver \1!/'
I have a super shiny silver spoon!

• Notice that those (parens) are not escaped because of -E!

10

More sed

• Can specify lines to check by numbers or with regex:
checks lines 1 to 20
$ sed '1,20s/john/John/g' file

checks lines beginning with 'The'
$ sed '/^The/s/john/John/g' file

• The & corresponds to the pattern found:
replace words with words in double quotes
$ sed 's/[a-zA-Z]\+/"&"/g' no_spoon.txt
"There" "is" "no" "spoon".

• Many more resources available here.

11

http://www.grymoire.com/Unix/Sed.html

Additional sed Practice

See sed Practice demo folder.

12

https://github.com/cs2043-sp17/lecture-demos/tree/master/lec10/practice

Interlude: xargs and shift

Xargs

• Use the output of a command as arguments to another
command

• Option 1: cmd2 $(command1)
• usually works fine, order looks weird

• Option 2: command1 | xargs cmd
• no subshell
• commands written in the “right” order

13

Xargs

Use standard input as arguments
xargs <command> [args for command...]

- pipe input to xargs or redirect file to xargs
- becomes arguments for xargs’ command
- like find’s -exec, except no {} \;

14

shift

Ignore some arguments
shift <number>

- used in shell scripts only!
- drop the first arguments
- renumber remaining arguments

- after shift; $2 is $1, $3 is $2, etc.

• Also effects $* and $@.
• Want to use $* but ignore the first argument? shift is your
answer.

• can keep shifting to keep ignoring arguments.

15

Pasting

Splicing Input

Merge Lines of Files
paste [options] [file1] [file2] ... [fileN]

- Neither options nor files are required.
- Use -d to specify the delimiter (TAB by default).
- Use -s to concatenate serially instead of side-by-side.
- No options and one file specified: same as cat.

- Use with -s to join all lines of a file.

16

paste Examples I

names.txt
Alice
Bob
Andy

phones.txt
607-123-4567
607-765-4321
607-706-6007

• paste cut_paste/names.txt and
cut_paste/phones.txt line by line:
$ paste -d , names.txt phones.txt > result.csv
$ cat result.csv
Alice,607-123-4567
Bob,607-765-4321
Andy,607-706-6007

17

paste Examples II

names.txt
Alice
Bob
Andy

phones.txt
607-123-4567
607-765-4321
607-706-6007

• paste names.txt and phones.txt serially (-s):
$ paste -d , -s names.txt phones.txt > result.csv
$ cat result.csv
Alice,Bob,Andy
607-123-4567,607-765-4321,607-706-6007

18

Splitting and Joining

Splitting Files

split a file into pieces
split [options] [file [prefix]]

- Use -l to specify how many lines in each file
- Default: 1000

- Use -b to specify how many bytes in each file.
- The prefix is prepended to each file produced.
- If no file provided (or if file is -), stdin is used.
- Use -d to produce numeric suffixes instead of lexographic.

- Not available on BSD / macOS.

19

split Examples I

ages.txt
Alice 44
Bob 30
Candy 12

• split split_join/ages.txt into files of one line each:
$ split -l 1 ages.txt
$ ls
ages.txt salaries.txt xaa xab xac
$ cat xaa
Alice 44
$ cat xab
Bob 30
$ cat xac
Candy 12

20

split Examples II

ages.txt
Alice 44
Bob 30
Candy 12

• split split_join/ages.txt into files of one line each,
• with numeric suffixes (-d) (GNU / Linux), and with ages_ prefix

$ split -l 1 -d ages.txt ages_
$ ls
ages_00 ages_01 ages_02 ages.txt salaries.txt
$ cat ages_00
Alice 44
$ cat ages_01
Bob 30
$ cat ages_02
Candy 12

21

Joining Files

join lines of two files on a common field
join [options] file1 file2

- Join two files at a time, no more, no less.
- Default: files are assumed to be delimited by whitespace.
- Use -t <char> to specify alternative single-character
delimiter.

- Use -1 n to join by the 𝑛th field of file1.
- Use -2 n to join by the 𝑛th field of file2.

- Field numbers start at 1, like cut and paste.

- Use -a f_num to display unpaired lines of file f_num.

22

join Examples I

ages.txt
Alice 44
Bob 30
Candy 12

salaries.txt
Bob 300,000
Candy 120,000

• join split_join/ages.txt and
split_join/salaries.txt files into results.txt:
$ join ages.txt salaries.txt > results.txt
$ cat results.txt
Bob 30 300,000
Candy 12 120,000

23

join Examples II

ages.txt
Alice 44
Bob 30
Candy 12

salaries.txt
Bob 300,000
Candy 120,000

• join split_join/ages.txt and
split_join/salaries.txt files into results.txt:
$ join -a1 ages.txt salaries.txt > results.txt
$ cat results.txt
Alice 44
Bob 30 300,000
Candy 12 120,000

24

References

[1] Stephen McDowell, Bruno Abrahao, Hussam Abu-Libdeh,
Nicolas Savva, David Slater, and others over the years.
“Previous Cornell CS 2043 Course Slides”.

25

	Cutting
	The Stream Editor ()
	Interlude: xargs and shift
	Pasting
	Splitting and Joining

