
09 – Expansions and Regular Expressions
CS 2043: Unix Tools and Scripting, Spring 2019 [2]

Matthew Milano
February 11, 2019

Cornell University

1



Table of Contents

1. Shell Expansion

2. grep and Regular Expressions

2



As always: Everybody! ssh to wash.cs.cornell.edu

• Quiz time! Everybody! run quiz-02-11-19
• You can just explain a concept from last class, doesn’t have to
be a command this time.

3



Shell Expansion



Expansion Special Characters

• There are various special characters you have access too in
your shell to expand phrases to match patterns, such as:
* ? ^ { } [ ]

• These special characters let you match many types of patterns:
• Any string.
• A single character.
• A phrase.
• A restricted set of characters.
• Many more, as we will see!

4



The * Wildcard

• The * matches any string, including the null string.
• It is a “greedy” operator: it expands as far as it can.
• Is related to the Kleene Star, matching 0 or more occurrences.
• For shell, * is a glob. See [3] for more.
# Does not match: AlecBaldwin
$ echo Lec*
Lec.log Lecture1.tex Lecture1.txt Lecture2.txt Lectures
# Does not match: sure.txt
$ echo L*ure*
Lecture1.tex Lecture1.txt Lecture2.txt Lectures

• This is the greedy part: L* ⟹ Lect
# Does not match: tex/ directory
$ echo *.tex
Lecture1.tex Presentation.tex

• Matces existing files/dirs, does not define sequence
5

https://en.wikipedia.org/wiki/Kleene_star


The ? Wildcard

• The ? matches a single character.
# Does not match: Lec11.txt
$ echo Lec?.txt
Lec1.txt Lec2.txt Lec3.txt

• Lec11 not matched because it would have to consume two
characters, the ? is exactly one character

• Which character, though, doesn’t matter.

# Does not match: ca cake
$ echo ca?
can cap cat

• Again matches existing files/dirs!

6



Creating Sets

• [brackets] are used to define sets.
• Use a dash to indicate a range of characters.
• Can put commas between characters / ranges ([a-z,A-Z]).

• Means either one lower case or one upper case letter.

• [a-z] only matches one character.
• [a-z][0-9]: “find exactly one character in a..z, immediately
followed by one character in 0..9”

Input Matched Not Matched
[SL]ec* Lecture Section Vector.tex
Day[1-3] Day1 Day2 Day3 Day5

[a-z][0-9].mp3 a9.mp3 z4.mp3 az2.mp3 9a.mp3

7



Inverting Sets

• The ^ character is represents not.
• [abc] means either a, b, or c
• So [^abc] means any character that is not a, b, or c.

Input Matched Not Matched
[^A-P]ec* Section.pdf Lecture.pdf
[^A-Za-z]* 9Days.avi vacation.jpg

• sets, inverted or not, again match existing files/dirs

8



Brace Expansion

• Brace Expansion: {...,...} matches any pattern inside the
comma-separated braces.

• Suports ranges such as 11..22 or t..z as well!
• Brace expansion needs at least two options to choose from.

Input Output
{Hello,Goodbye}\ World Hello World Goodbye World
{Hi,Bye,Cruel}\ World Hi World By World Cruel World
{a..t} Expands to the range a … t
{1..99} Expands to the range 1 … 99

• Note: NO SPACES before / after the commas!
• Mapped onto following expression where applicable:

• Following expression must be continuous (whitespace escaped)
• See next slide.

• Braces define a sequence, unlike previous! 9



Brace Expansion in Action
# Extremely convenient for loops:
# prints 1 2 3 ... 99
$ for x in {1..99}; do echo $x; done
# bash 4+: prints 01 02 03 .. 99
$ for x in {01..99}; do echo $x; done

# Expansion changes depending on what is after closing brace:
# Automatic: puts the space between each
$ echo {Hello,Goodbye}
Hello Goodbye
# Still the space, then *one* 'World'
$ echo {Hello,Goodbye} World
Hello Goodbye World
# Continuous expression: escaped the spaces
$ echo {Hello,Goodbye}\ Milky\ Way
Hello Milky Way Goodbye Milky Way
# Yes, we can do it on both sides. \\n: lose a \ in expansion
$ echo -e {Hello,Goodbye}\ Milky\ Way\ {Galaxy,Chocolate\ Bar\\n}
Hello Milky Way Galaxy Hello Milky Way Chocolate Bar
Goodbye Milky Way Galaxy Goodbye Milky Way Chocolate Bar

10



Combining Them

• Of course, you can combine all of these!
• cd /course/cs2043/demos/09-demos/combined
# Doesn't match: hello.txt
$ ls *h[0-9]*
h3 h3llo.txt

# Doesn't match: foo.tex bar.tex
$ ls [bf][ao][row].t*t
bar.text bar.txt foo.text foo.txt

# Careful with just putting a * on the end...
$ ls [bf][ao][row].t*
bar.tex bar.text bar.txt foo.tex foo.text foo.txt

# Doesn't match: foo.text bar.text
$ ls {foo,bar}.t{xt,ex}
bar.tex bar.txt foo.tex foo.txt

11



Special Characters Revisited

• The special characters are
# Expansion related special characters
* ? ^ { } [ ]
# Additional special characters
$ < > & ! #

• The shell interprets them in a special way unless we escape
them (\$), or place them in single quotes ('$').

• When executing a command in your shell, the expansions
happen before the command is executed. Consider ls *.txt:
1. Starts parsing: ls is a command that is known, continue.
2. Sees *.txt: expand now e.g. *.txt ⇒ a.txt b.txt c.txt
3. ls a.txt b.txt c.txt is then executed.

• Shell expansions are your friend, and we’ll see them again…

12



Shell Expansion Special Characters Summarized

Symbols Meaning
* Multiple character wildcard: 0 or more of any character.
? Single character wildcard: exactly one, don’t care which.
[] Create a set, e.g. [abc] for either a, or b, or c.
^ Invert sets: [^abc] for anything except a, b, or c.
{} Used to create enumerations: {hello,world} or {1..11}
$ Read value: echo $PWD reads PWD variable, then echo
< Redirection: create stream out of file

tr -dc '0-9' < file.txt
> Redirection: direct output to a file.

echo "hiya" > hiya.txt
& Job control.
! Contextual. In Shell history, otherwise usually negate.
# Comment: anything after until end of line not executed.

• Non-exhaustive list: see [4] for the full listing.

13



Single vs Double Quotes

• Special characters inside double quotes “prefer” not to expand
• some still need escaping

• Special characters in single quotes are never expanded.
# prints the letters as expected
$ for letter in {a..e}; do echo "$letter"; done
# escaping the money sign means give literal $ character
$ for letter in {a..e}; do echo "\$letter"; done
# $ is literal now, so doesn't read variable
$ for letter in {a..e}; do echo '$letter'; done

• Pay attention to your text editor when writing scripts.
• Like the slides, there is syntax highlighting.
• It usually changes if you alter the meaning of special characters.

• If you remember anything about shell expansions, remember
the difference between single and double quotes.

14



tr Revisited with Sets

Useful POSIX Sets
Set Name Set Value
[:lower:] lowercase letters
[:upper:] uppercase letters
[:alpha:] alphabetic characters (upper and lower)
[:digit:] digits 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9
[:alnum:] alphanumeric characters
[:punct:] punctuation characters
[:space:] whitespace characters

# Get excited. Note single quotes because of !
$ echo 'I am excited!' | tr [[:lower:]] [[:upper:]]
I AM EXCITED!
# Component-wise: e->3, t->7, a->4, o->0, s->5
$ echo 'leet haxors' | tr [etaos] [37405]
l337 h4x0r5 15



grep and Regular Expressions



Time for the Magic

Globally Search a Regular Expression and Print
grep <pattern> [input]

- Searches input for all lines containing pattern.
- As easy as searching for a string in a file.
- Or it can be much more, using regular expressions.
- Common use:
<command> | grep <thing you need to find>
- You have some command or sequence of commands
producing a large amount of output.

- The output is longer than you want, so filter through grep.
- Reduces the output to only what you really care about!

- Understanding how to use grep is really going to save you a
lot of time in the future!

16



Some Useful Grep Options

• -i: ignores case.
• -A 20 -B 10: print 10 lines Before, 20 lines After each match.
• -v: inverts the match.
• -o: shows only the matched substring.
• -w: “word-regexp” – exclusive matching, read the man page.
• -n: displays the line number.
• -H: print the filename.
• --exclude <glob>: ignore glob e.g. --exclude *.o
• -r: recursive, search subdirectories too.

• Note: your Unix version may differentiate between -r and -R,
check the man page.

• grep -r [other flags] <pattern> <directory>
• That is, you specify the pattern first, and where to search after
(just like how the file in non-recursive grep is specified last).

17



Regular Expressions

• grep, like many programs, takes in a regular expression
as its input. Pattern matching with regular expressions is
more sophisticated than shell expansions, and also uses
different syntax.

• More precisely, a regular expression defines a set of strings – if
any part of a line of text is in the set, grep returns a match.

• When we use regular expressions, it is (usually) best to
enclose them in quotes to stop the shell from expanding it
before passing it to grep / other tools.
WARNING
When using a tool like grep, the shell expansions we have
learned can and do still occur! I strongly advise using double
quotes to circumvent this. Or if you want the literal character
(e.g. the *), use single quotes to disable all expansions entirely. 18



Regular Expression Similiarities

• Some regex patterns are similar / the same.

Single Characters are Different

Shell Expansion: ?
Regular Expressions: .

- ? means something different in regex (Differences slide).
- Example: grep "t.a" ⇒ lines with tea, taa, and steap

Sets are almost the Same
Shell Expansion: [a-z]
Regular Expressions: [a-z]

- Matches one of the indicated characters.
- Don’t separate multiple characters with commas in the regex
form (e.g. [a,b,q-v] becomes [abq-v]).

19



A Note on Ranges in Sets

• Like shell wildcards, regex is case-sensitive.
• How would you match any letter, regardless of case?

• If you take a look at the ASCII codes ([1]), you will see that the
lower case letters come after the upper case letters.

• You should be careful about trying to do something like [a-Z].
• Instead, just do [a-zA-Z].
• Or use the POSIX set [[:alpha:]].
• Note: some programs may accept the range [a-Z].

• But it may not actually be the range you think. It depends.

20



Regular Expression Differences

• Some of the shell expansion tools are completely different.
Modifiers Apply to the Expression Before Them

? is 0 or 1 occurences: a? ⇒ 0 or 1 a
* is 0 or more occurences: a* ⇒ 0, 1, … 𝑛 a’s
+ is 1 or more occurences: a+ ⇒ 1, 2, … 𝑛 a’s

- Note: + and ? are extended regular expression characters.
- Must escape (\+ and \?) or use -E or egrep.
# Nothing happens, they weren't escaped
$ grep "f?o+" combined/*.*
# f\? can be 0, so h{e,3}llo are found
$ grep "f\?o\+" combined/*.*
combined/foo.tex:1:foo
combined/foo.text:1:foo
combined/foo.txt:1:foo
combined/h3llo.txt:1:h3llo
combined/hello.txt:1:hello 21



Curly Braces in Pattern Creation

• Recall that curly braces are an expansion:
$ echo h{e,3}llo
hello h3llo
$ echo "h{e,3}llo"
h{e,3}llo

• However, you cannot use them with grep like this:
# Second expansion: treated as file input to grep
# You can only supply *ONE* pattern!
$ grep h{e,3}llo combined/*.*
grep: h3llo: No such file or directory
combined/hello.txt:1:hello
# Double quotes won't save you: that's the literal
# string 'h{e,3}llo' at this point (so no match).
$ grep "h{e,3}llo" combined/*.*

• AKA you cannot easily do these expansions when using grep.
• {}.bash are fundamentally different from the other expansions

• defines a sequence, does not match existing targets. 22



Final Thoughts and Additional Resources

• The regular expressions we use in our shell are the “Perl
Regular Expressions.”

• There are other regular expression syntaxes.
• Most tools / languages use perl RE syntax.

• “Regular” regular expressions
• Extended regular expressions
• Python re (Regular Expression) module

• Many excellent examples, and thorough explanations.
• Topics of interest:

• Greedy vs non-greedy,
• Positive lookahead vs negative lookahead
• Capturing vs non-capturing

• Probably the best step-by-step tutorial there is

23

http://tldp.org/LDP/Bash-Beginners-Guide/html/sect_04_01.html#sect_04_01_03
https://www.gnu.org/software/sed/manual/html_node/Regular-Expressions.html
https://docs.python.org/3/library/re.html
https://regexone.com/


References

[1] ASCII Table. ASCII Character Codes and html, octal, hex,
and decimal chart conversion. 2010. url:
http://www.asciitable.com/.

[2] Stephen McDowell, Bruno Abrahao, Hussam Abu-Libdeh,
Nicolas Savva, David Slater, and others over the years.
“Previous Cornell CS 2043 Course Slides”.

[3] The Linux Documentation Project. Globbing. 2017. url:
http://www.tldp.org/LDP/abs/html/globbingref.html.

[4] The Linux Documentation Project. Special Characters.
2017. url:
http://www.tldp.org/LDP/abs/html/special-chars.html.

24

http://www.asciitable.com/
http://www.tldp.org/LDP/abs/html/globbingref.html
http://www.tldp.org/LDP/abs/html/special-chars.html

	Shell Expansion
	 and Regular Expressions

