
05 – Git, Chaining, Piping & Redirection
CS 2043: Unix Tools and Scripting, Spring 2019 [2]

Matthew Milano
February 1, 2019

Cornell University

1

Table of Contents

1. As always: Everybody! ssh to wash.cs.cornell.edu

2. Quiz time! Everybody! run quiz-02-01-19

3. Let’s Git back into it

4. Assorted Commands

5. Piping & Redirection

2

As always: Everybody! ssh to
wash.cs.cornell.edu

Quiz time! Everybody! run
quiz-02-01-19

Let’s Git back into it

local git Terminology

• The tracked folder is called a repository (repo)
• You git init . to create repository “here”
• To track a file in a repository, you git add <filename>
• The act of “saving” is commit, and needs a message

• to commit all tracked files,
git commit -a -m 'your message here'

• use git log to view all your commits (q quits)
• use git checkout <hash> to temporarily revert your files
to an old commit

3

Demo Time! Everybody!

cd ~/course/cs2043/demos/git-demo

nano demo-file

git commit -a -m ‘mucking with the demo’

git log

git checkout 1ff647

4

The arrow of time, and branching

• So that last command produced quite the message, eh?
• Where should a commit “go” now?

• after the last commit?
• But you’re in the past now…

• Can create a new “branch” of time
• An “alternate history”
• What if I did this instead of that?

• Create a branch with
git checkout -b <new-branch-name>

• lots of other ways

• Can checkout a branch to re-enter that timeline

5

back to the demo

git checkout -b alternate-timeline

git checkout master

6

Time travel is only fun when you merge!

git merge alternate-timeline

• Git tries to apply everything that happened in
alternate-timeline to your current branch

• could very easily break! This is a conflict

7

Working with Friends

• To copy a repository, you git clone it
• To work with friends, you need to

• git clone their (or a common) repository
• git pull /other/repo/path their changes
• Always commit (or “stash”) before you pull

git pull /course/cs2043/demos/git-demo

git pull /course/cs2043/demos/git-demo

8

Assorted Commands

Counting

• Ever wanted to show off how cool you are?

Word Count
wc [options] <file>

- count the number of lines: -l
- count the number of words: -w
- count the number of characters: -m
- count the number of bytes: -c

• Great for things like:
• Reveling in the number of lines you have programmed.
• Analyzing the verbosity of your personal statement.
• Showing people how cool you are.
• Completing homework assignments?

9

Sorting

Sort Lines of Text
sort [options] <file>

- Default: sort by the ASCII code (roughly alphabetical, see
[1]) for the whole line.

- Use -r to reverse the order.
- Use -n to sort by numerical order.
- Use -u to remove duplicates.

• Working with the demo file
/course/cs2043/demos/peeps.txt:

$ cat peeps.txt
Manson, Charles
Bundy, Ted
Bundy, Jed
Nevs, Sven
Nevs, Sven

$ sort -r peeps.txt
Nevs, Sven
Nevs, Sven
Manson, Charles
Bundy, Ted
Bundy, Jed

$ sort -ru peeps.txt
Nevs, Sven
Manson, Charles
Bundy, Ted
Bundy, Jed
only 1 Nevs, Sven 10

Advanced Sorting: Why?

• The sort command is quite powerful, for example you can do:
$ sort -n -k 3 -t "," <filename>
|| |||| |----|==> Use comma as delimiter
|| ++++=========> Choose the third field as the sort key
++==============> Sort numerically

• Sorts the file numerically by using the third column, separating
by a comma as the delimiter instead of whitespace.

• Read the man page!
• Learning sort command is particularly worth your time:

• Easy sorting of text ⟹ faster parsing / prototyping.
• Many commands produce reliably ordered output.
• Looking for a specific thing? Just sort with that as the key!

11

Advanced Sorting: Example

• The demo file numbers.txt contains:
$ cat numbers.txt
02,there,05
04,how,03
01,hi,06
06,you,01
03,bob,04
05,are,02

Normal numeric sort
$ sort -n numbers.txt
01,hi,06
02,there,05
03,bob,04
04,how,03
05,are,02
06,you,01

On the third column
$ sort -n -k 3 -t "," numbers.txt
06,you,01
05,are,02
04,how,03
03,bob,04
02,there,05
01,hi,06

• Reverse ordering in 3rd column not necessary, just an example.

12

Special Snowflakes

Unique — Report or Omit Repeated Lines
uniq [options] <file>

- No flags: discards all but one of successive identical lines.
- Unique occurrences are merged into the first occurence.

- Use -c to prints the number of successive identical lines
next to each line.

- Use -d to only print repeated lines.

13

Search and Replace

• Translate characters / sets (but not regular expressions) easily!

Translate or Delete Characters (or Sets)
tr [options] <set1> [set2]

- Translate or delete characters / sets.

- We will cover POSIX / custom sets soon.

- By default, searches for strings matching set1 and replaces them
with set2.

- If using -d to delete, only set1 is specified.
- Can use -c to invert (complement) the set.

• The tr command only works with streams.
• Examples to come after we learn about piping and chaining
commands.

14

Piping & Redirection

Piping Commands

• Bash scripting is all about combining simple commands
together to do more powerful things. This is accomplished
using the “pipe” character.

Piping
<command1> | <command2>

- Pass output from command1 as input to command2.
- Works for almost every command.

- Note: echo does not allow you to pipe to it! Use cat instead :)

- In some senses, the majority of commands you will learn in this
course were designed to support this.

15

Some Piping Examples

• 1, 2, 3…easy as ABC?

Piping along…
$ ls -al /bin | less
- Scroll through the long list of programs in /bin

$ history | tail -20 | head -10
- The 10th - 19th most recent commands executed.
$ echo * | tr ' ' '\n'
- Replaces all spaces characters with new lines.
- Execute just echo * to see the difference.

• In all of these examples, try executing it first without the |
• First: execute history
• Next: execute history | tail -20
• Last: execute history | tail -20 | head -10 16

Redirection

• The redirection operators are: >, >>, <, or <<.
• To redirect standard output, use the > operator.

• command > file

• To redirect standard input, use the < operator.
• command < file

• To redirect standard error, use the > operator and specify the
stream number 2.

• command 2> file

• Combine streams together by using 2>&1 syntax.
• This says: send standard error to where standard output is going.
• Useful for debugging / catching error messages…
• …or ignoring them (you will often see that sent to /dev/null).

17

Redirection Example

• Bash processes I/O redirection from left to right, allowing us to
do fun things like this:

Magic
tr -dc '0-9' < test1.txt > test2.txt

- Deletes everything but the numbers from test1.txt, then store
them in test2.txt.

- CAUTION: do not ever use the same file as output that was input.
- Example: tr -dc '0-9' < original.txt > original.txt
- You will lose all your data, you cannot read and write this way.

• Piping and Redirection are quite sophisticated, please refer to
the Wikipedia page in [3].

18

References

[1] ASCII Table. ASCII Character Codes and html, octal, hex,
and decimal chart conversion. 2010. url:
http://www.asciitable.com/.

[2] Stephen McDowell, Bruno Abrahao, Hussam Abu-Libdeh,
Nicolas Savva, David Slater, and others over the years.
“Previous Cornell CS 2043 Course Slides”.

[3] Wikipedia. Redirection (Computing). 2017. url: https:
//en.wikipedia.org/wiki/Redirection_%28computing%29.

19

http://www.asciitable.com/
https://en.wikipedia.org/wiki/Redirection_%28computing%29
https://en.wikipedia.org/wiki/Redirection_%28computing%29

	As always: Everybody! ssh to wash.cs.cornell.edu
	Quiz time! Everybody! run
	Let's Git back into it
	Assorted Commands
	Piping & Redirection

