
04 – The Find command, editing, and scripting
CS 2043: Unix Tools and Scripting, Spring 2019 [1]

Matthew Milano
January 30, 2019

Cornell University

1

Table of Contents

1. As always: Everybody! ssh to wash.cs.cornell.edu

2. Quiz time! Everybody! run quiz-01-30-19

3. The find Command

4. Scripting

5. Text Editors

6. Let’s Git Started

2

As always: Everybody! ssh to
wash.cs.cornell.edu

Quiz time! Everybody! run
quiz-01-30-19

The find Command

If you Leave this Class with Anything…

• Quite possibly the most underrated tool for your terminal:
• find: searching for files / directories by name or attributes.

3

Finding Yourself

Search for Files in a Directory Hierarchy
find [where to look] criteria [what to do]

- Used to locate files or directories.
- Search any set of directories for files that match a criteria.
- Search by name, owner, group, type, permissions, last
modification date, and more.
- Search is recursive (will search all subdirectories too).

- Sometimes you may need to limit the depth.

- Comprehensive & flexible. Too many options for one slide.

4

Some Useful Find Options

• -name: name of file or directory to look for.
• -maxdepth num: search at most num levels of directories.
• -mindepth num: search at least num levels of directories.
• -amin n: file last access was n minutes ago.
• -atime n: file last access was n days ago.
• -group name: file belongs to group name.
• -path pattern: file name matches shell pattern pattern.
• -perm mode: file permission bits are set to mode.

Of course…a lot more in man find.

5

Some Details

• This command is extremely powerful…but can be a little
verbose (both the output, and what you type to execute it).
That’s normal.

• Modifiers for find are evaluated in conjunction (a.k.a AND).
• Can condition your arguments with an OR using the -o flag.

• Must be done for each modifier you want to be an OR.

• Can execute command on found files / directories by using the
-exec modifier, and find will execute the command for you.

• The variable name is {}.
• You have to end the command with either a

• Semicolon (;): execute command on each result as you find them.
• Plus (+): find all results first, then execute command.
• Warning: have to escape them, e.g. \; and \+
• The ; and + are shell expansion characters!

6

Basic Examples

Find all files accessed at most 10 minutes ago
find . -amin -10
Find all files accessed at least 10 minutes ago
find . -amin +10
Comparing AND vs OR behavior
find . -type f -readable -executable
- All files that are readable and executable.
find . -type f -readable -o -executable
- All files that are readable or executable.
Display all the contents of files accessed in the last 10 minutes
find . -amin -10 -exec cat {} \+
On a Mac and ended up with .DS_Store Everywhere?
find . -name ".DS_Store" -exec rm -f {} \;
- Could be ; or + since rm allows multiple arguments. 7

Solve maze in one line

Maze in 2 seconds
find / -iname victory -exec handin maze {} \+

• imagine how much more complicated maze could get in the
real world…

8

More Involved Example

• Your boss asks you to backup all the logs and send them along.
• Combining some of the things we have learned so far (also zip)
Become `root` since `/var/log` is protected:
$ sudo su
<enter password for your user>
Make a containment directory to copy things to
$ mkdir ~/log_bku
`find` and copy the files over in one go
$ find /var/log -name "*.log" -exec cp {} ~/log_bku/ \;
The `cp` executed as `root`, so we cannot read them.
$ chown -R mpm288 ~/log_bku # My netID is mpm288
Give the folder to yourself.
$ mv ~/log_bku /home/mpm288/
Become your user again
$ exit
Zip it up and send to your boss
$ zip -r log_bku.zip ~/log_bku

9

More Involved Example: Analysis

• Don’t have to be root: sudo find was too long for slides.
1. Make the directory <dir> as normal user.
2. sudo find ... -exec cp {} <dir> \;
3. sudo chown -R <you> <dir>
4. zip -r <dir>.zip <dir>

• Cannot use \+ instead of \; in this scenario:
• Suppose you found /var/log/a.log and /var/log/b.log.
• Executing with \; (-exec as you find):

1. cp /var/log/a.log ~/log_bku/
2. cp /var/log/b.log ~/log_bku/

• Executing with \+ (find all first, then -exec once):
• cp /var/log/a.log /var/log/b.log ~/log_bku/
• cp gets mad: you gave three arguments

10

Scripting

What is a Script?

• The high-level story is: nothing special.
• Just a sequence of operations being performed.
• Runs from top to bottom.

• Common practice:
• Executable filetype.
• Shebang.

11

Bash Scripting at a Glance

#!/bin/bash
echo "hello world!"
echo "There are two commands here!"

#!/usr/bin/python3

print('hello there friend');

• The shebang
#!/bin/bash is the
interpreter

• Run a command or two!
• Always test your scripts!

#!/bin/bash
#this is a comment. Maze solution script!
find / -iname victory -exec handin maze {} \+

12

Some execution details

• Run your scripts by providing a qualified path to them.
• path must start with a folder
• Current directory? use ./scriptname
• somewhere else? specify the path to your script

• Scripts execute from top to bottom.
• This is just like Python, for those of you who know it already.
• Bad code? you may only realize it when (and if) the script
reaches that line

• The script starts at the top of the file.
• Execution continues down until the bottom (or exit called).

• Broken statement? It still keeps executing the subsequent lines.

13

Text Editors

Nano, and VIM vs Emacs

• There is a great and ancient war among the *NIXfolk … long has
it raged, and ever shall it burn.

• To use VIM, or to use emacs?
• I will (try to) teach both.

• But the easiest editor is nano

• NANO: the OG notepad
• VIM: mode-based editor
• EMACS: hotkey-based editor

14

Your friend Nano

Edit files like it’s 1989
nano file

Figure 1: Nano Screenshot
15

What is VIM?

Edit files like it’s 1976. or 1991.
vim file

• VIM is a powerful “lightweight” text editor.
• VIM actually stands for “Vi IMporoved”.

• vi is the predecessor, and mostly works the same.
• If you end up on a system that does not have vim, try vi.

• if no vi, try nano

• VIM can be installed on pretty much every OS these days.
• Allows you to edit things quickly…

• …after the initial learning curve.

16

The 3 Main Modes of VIM

• Normal Mode:
• Launching pad to issue commands or go into other modes.
• Can view the text, but not edit it directly (only through
commands).

• Return to normal mode from other modes: press ESCAPE

• Visual Mode:
• Used to highlight text and perform block operations.
• Enter visual mode from normal mode: press v

• Visual Line: shift+v
• Visual Block: ctrl+v
• Explanation: try them out, move your cursor around…you’ll see it.

• Insert Mode:
• Used to type text into the buffer (file).
• Like any regular text-editor you’ve seen before.
• Enter from normal mode: press i 17

Moving Around VIM

• Most of the time, you can scroll with your mouse / trackpad.
• You can also use your arrow keys.
• VIM shortcuts exist to avoid moving your hands at all. Use

• h to go left.
• j to go down.
• k to go up.
• l to go right.

• Hardcore VIM folk usually map left caps-lock to be ESCAPE.
• Goal: avoid moving your wrists at all costs. Arrows are so far!
• I don’t do this. I also don’t use VIM.

18

Useful Commands

:help help menu, e.g. specify :help v
:u undo
:q exit
:q! exit without saving

:e [filename] open a different file
:syntax [on/off] enable / disable syntax highlighting

:set number turn line numbering on
:set nonumber turn numbering off (e.g. to copy paste)
:set spell turn spell checking on

:set nospell turn spell checking off
:sp split screen horizontally
:vsp split screen vertically

<ctrl+w> <w> rotate between split regions
:w save file
:wq save file and exit

<shift>+<z><z> alias for :wq (hold shift and hit z twice) 19

WOW How about no. let’s see Emacs

• Basic editing works like notepad (except no mouse)
• No switching between modes to edit/search/save/etc.
• Emacs can also be installed on pretty much every OS.
• Allows you to edit things moderately quickly…

• …and keeps getting faster as you learn it

20

Emacs modes

An editor, also from 1976.
emacs file

• Based on file and action type
• Java file detected? IDE mode engaged!
• Plain file detected? Basic edit mode engaged!
• LaTeX file detected? TeXstudio mode!

• Shortcuts and actions mostly independent of mode
• But modes hide a lot of power…
• Sometimes accused of being a whole OS.

21

Moving around and basic editing:

• move by character? Use the arrow keys!
• move by word? Hold control and use the left/right arrow keys!
• move by paragraph? Hold control and use the up/down arrow
keys!

• Saving: hold CTRL, press X then S (all while holding control
• Closing: hold CTRL, press X then C (all while holding control)
• Convention: C-x means “hold control, press x”

• C-x C-s means “press x and s, all while holding control”

• These editors predate “normal” shortcuts!

22

Useful Shortcuts

C-x C-f Open a file for editing
C-x C-s Save the current file
C-x C-c exit
C-x b change to a different open file

C-space (arrow key) Start highlighting (marking) a region
C-w Cut the code in the highlighted region
Alt-w Copy the code in the highlighted region
C-g Quit (cancel command, “escape”)
C-y paste
C-s search (find)

Escape-x Enter a command by name (C-g to quit)
C-x k close a file (it will ask) (emas stays open)

Escape-$ spellcheck the word under the cursor
Escape-x ispell spellcheck the highlighted region
Escape-x help Get just a lot of help information
Escape-x <tab> List ALL THINGS EMACS CAN DO 23

What editor to choose?

Figure 2: Editor Learning Curves
24

Let’s Git Started

What is git?

• git is a decentralized version control system.
• Like “historic versions” for DropBox/OneDrive
• Except far more advanced, and more streamlined
• It enables you to save changes as you go to your code.

• As you make these changes, if at any point in time you discover
your code is “broken”, you can revert back in time!

• Of course, if you haven’t been “saving” frequently, you have less
to work with.

• Mantra: commit early and often.

• Can also share your code with friends!!
• Can work on same version, or…
• can “go back in time” to latest working one!
• You will have trouble – we all do.

25

The Official Man Entry

The Stupid Content Tracker
git [--version] [--help] [-C <path>] [-c <name>=<value>]

[--exec-path[=<path>]] [--html-path] [--man-path]
[--info-path] [-p|--paginate|--no-pager]
[--no-replace-objects] [--bare] [--git-dir=<path>]
[--work-tree=<path>] [--namespace=<name>]
<command> [<args>]

- Do not expect to learn git once and be done.
- You will learn it steadily, over time. The sooner you start, the
better off you will be in your deveolpment career.

- Git is not just for CS Majors.
- It is for anybody working with any code.

26

git Terminology

• The tracked folder is called a repository (repo)
• You git init . to create repository “here”
• To track a file in a repository, you git add <filename>
• The act of “saving” is commit, and needs a message

• to commit all tracked files,
git commit -a -m 'your message here'

• To copy a repository, you git clone it
• To work with friends, you need to

• git clone their (or a common) repository
• git pull /other/repo/path their changes

• if you edited the same file, you get a conflict
• if you have uncommitted changes, you can’t pull

27

Teaser: Example Scenario

• Suppose you (A), and your best friend B are working in the
same repo.

• You init the repository and make a commit; your friend then
clones from you

• A and B both edit the same file and commit the edits
• A pulls, and discovers the conflict! You resolve it, but..
• B pulls, and discovers another one!
• Basically, git can get complicated quickly. Nothing replaces
actual communication!

28

Demo Time! Everybody!

git clone /course/cs2043/demos/git-demo cd git-demo

git pull /course/cs2043/demos/git-demo

nano demo-file

git commit -a -m ‘mucking with the demo’

git pull /course/cs2043/demos/git-demo

29

References

[1] Stephen McDowell, Bruno Abrahao, Hussam Abu-Libdeh,
Nicolas Savva, David Slater, and others over the years.
“Previous Cornell CS 2043 Course Slides”.

30

	As always: Everybody! ssh to wash.cs.cornell.edu
	Quiz time! Everybody! run
	The Command
	Scripting
	Text Editors
	Let's Git Started

