Topics: A mostly-unsupervised approach to the word segmentation problem, following R. K. Ando and L. Lee (2003). The question is whether simple statistics drawn from a large enough data-set can be used to accomplish a difficult language processing task.

I. Example sequence of Japanese kanji

社長兼業務部長

II. N-gram evidence

(Character-level) bigram evidence considers the following situation:

\[
\begin{array}{cccccccc}
W & X & Y & Z & A & B & C & D \\
\end{array}
\]

The general \(n \)-gram situation looks like this:

where we ask, for each choice of \textit{tangent} \(n \)-gram \(t_L \) and \(t_R \) and for each choice of \textit{straddling} \(n \)-gram \(s_1, s_2, \ldots, s_{n-1} \), is \(\#(t_d) > \#(s_j) \)?

(OVER)
III. Evidence combination We use a “senatorial” system. Suppose we are looking at position \(i\), and are only choosing block lengths from some fixed set \(N\).

1. For each \(n\) in \(N\), calculate the average number of “yes” votes among the \(2 \times (n - 1)\) \(n\)-gram comparisons.

2. The final vote \(V(i, N)\) is the average of these averages.

IV. Making segmentation decisions

![Diagram showing segmentation decisions](image)

Draw a boundary if the evidence (plotted as a red line) for a location is either a local maximum (this induces the green boundaries) or, failing that, above a threshold (this induces the magenta boundary).

V. Evaluation metrics

- Precision: What percentage of what you thought were words were really words?
- Recall: What percentage of the real words did you mark as words?
- F: combines precision and recall: \(F = 2PR/(P+R)\)

VI. Word-level accuracy results Training data: 37 million characters worth of unsegmented kanji sequences from 1993 NIKKEI newswire, plus about 50 segmented sequences (representing roughly eight minutes of work); the latter is used for parameter setting (\(N\) and \(t\)).

The two algorithms on the left are two state-of-the-art (at the time) systems based on hand-crafted grammars and dictionaries containing 115,000 or 231,000 entries, respectively.