Topics: Unsupervised learning of a very restricted class of weighted (or probabilistic) grammars; language-model smoothing.

I. More on garden-path sentences Some observations we can make from the garden-path phenomenon:

- Failure to parse yields a failure to understand.
- Humans engage in on-line processing, constructing hypotheses as we go.
- Humans discard, or at any rate do not consider, all possible correct hypotheses.

II. Sentence-ranking example A classic from the speech-recognition literature.

1. It’s hard to recognize speech.
2. It’s hard to wreck a nice beach.

III. Bigram CFGs A bigram CFG would take the following form:

- Terminals: \(w_1, w_2, \ldots, w_m \), the “real words”, plus a special “end of sentence” terminal \(w_{m+1} \) that is inserted at the end of every sentence and that appears nowhere else in any sentence.
- Nonterminals: \(S, V_1, V_2, \ldots, V_{m+1} \)
- Start symbol: \(S \)
- Rewrite rules: all rewrite rules of the form
 1. \(V_i \rightarrow w_iV_j \),
 2. \(S \rightarrow V_i \)

where \(1 \leq i \leq m, 1 \leq j \leq m + 1 \), plus the rule \(V_{m+1} \rightarrow w_{m+1} \).

IV. The poverty of the stimulus The classic example, due to Noam Chomsky:

1. Colorless green ideas sleep furiously.
2. Furiously sleep ideas green colorless.

V. Interpolation smoothing For \(i \) between 1 and \(m \) inclusive, set the probability of a rule \(V_i \rightarrow w_iV_j \) (which, in our case, corresponds to the probability that if word \(w_i \) occurs then word \(w_j \) follows it) to

\[
\lambda \frac{\#(w_iw_j)}{\sum_k \#(w_iw_k)} + (1 - \lambda) \frac{\#(w_j)}{\sum_k \#(w_k)}
\]

where the interpolation parameter \(\lambda \) (pronounced “lambda”) is between 0 and 1 (usually non-inclusive).

1This definition improves on that given in the previous lecture aid (which we didn’t get to anyway) in terms of probabilistic estimation.