Topics: PageRank (Brin and Page, 1998\(^1\)), “the” Google link-based ranking algorithm.

I. Definitions and conventions For a document \(d\), we define:

\[
\text{To}(d): \text{ the set of documents that link to } d. \\
\text{From}(d): \text{ the set of documents that are linked to by } d.
\]

The size of these two quantities correspond exactly to the in-degree and out-degree of \(d\), respectively.

II. Example: in-degree vs. “prestige”

Note that the in-degree of \(W\) is the same as the in-degree of \(Z\).

III. Example: propagation of “prestige”

IV. PageRank We give an explicitly iterated version here. Let \(\epsilon\) be some constant between 0 and 1, exclusive.

- For every \(d_j\) in the \(n\)-document corpus, set \(\text{PR}^{(0)}(d_j)\) to \(1/n\).

- Let \(i\) be increasing from 1 on, until it’s the case that the set of PageRank scores “converges” (the change in the set of scores between one value of \(i\) and the next is sufficiently small): set

\[
\text{PR}^{(i)}(d_j) = (1 - \epsilon) \left[\sum_{d \in \text{To}(d_j)} \frac{\text{PR}^{(i-1)}(d) \times 1}{\text{outdegree}(d)} \right] + \epsilon \times \frac{1}{n}.
\]

Handy fact: assuming the link structure of the network under consideration has certain nice properties, the sum of the PageRank scores over all documents \(d_j\) in the corpus at any given iteration \(i\) is always 1.

\(^1\)Beware of the typo in the PageRank equation given in the original paper.