Topics: tf-idf weighting example; potential utility of link-analytic approaches; in-degree models.

Announcements: The office hours schedule for this week, altered because of Friday’s in-class prelim, is as follows. This information is also available at www.cs.cornell.edu/courses/cs172/2007sp/calendar.htm. Graded HW2’s can be picked up at the Monday and Tuesday hours as well as Wednesday’s lecture.

I. Altered example data

\[W: w_1: \text{“the”}; w_2: \text{“wolf”}; w_3: \text{“lady”}; w_4: \text{“of”}; w_5: \text{“shalott”}. \]

Corpus:

\[d': \text{the wolf the wolf} \]
\[d'': \text{lady lady lady, the lady of shalott} \]
\[d''': \text{the the} \]
\[d'''' : \text{of the lady} \]

Query: “the shalott painting”

Self-check: Under tf weighting (and no normalization of the query vector), \(\vec{d}' \cdot \vec{q} = \frac{2}{\sqrt{8}} \) and \(\vec{d}''' \cdot \vec{q} = \frac{2}{\sqrt{19}} \).
II. A Web power law A “power law” is a relationship of the form \(y = x^{-\alpha} \), where \(\alpha \) is a constant. Observe that if we take the log of both sides, we get the linear relationship \(\log(y) = -\alpha \log(x) \).

The \((in-)degree\ distribution\) of a given collection of linked documents gives, for each possible in-degree \(x \), the number (or fraction) of documents that have in-degree equal to \(x \). Here is Figure 1 of Broder et al. (2000), which shows the in-degree distribution, on a log-log scale, for their 200M-document Web crawl. The line corresponding to \(\alpha = 2.1 \) is highlighted.

III. Web-growth models: Template, conventions and notation We use the integer-valued variable \(t \geq 0 \) to stand for time.

1. The constant \(n_0 \geq 1 \) is the number of documents that exist at time \(t = 0 \); call them \(d_{-1}, d_{-2}, \ldots, d_{-n_0} \), and assume they have no links between them.

2. At the \(j^{th} \) time step, we add a new document, named \(d_j \); hence, a positive subscript indicates when a document was added.

3. We then grant to \(d_j \) a constant number \(\ell \) of links, where \(1 \leq \ell \), to some of the \(n_0 + j - 1 \) pre-existing documents, allowing repeated links to the same document.

4. We are interested in computing \(\text{In}(\text{doc} = j, \text{time} = t) \), which is our estimate of \(d_j \)’s in-degree at time \(t \geq \max(j, 1) \) (there is no point computing the in-degree of a document at a time before it existed), where \(j \geq 1 \).