Computation, Information, and Intelligence (ENGRI/CS/INFO/COGST 172), Spring 2007 2/23/07: Lecture 15 aid — TF and TF-IDF weighting

Topics: document ranking based on document vectors using term-frequency (tf) or tf-idf weighting.

Announcements: Due to the upcoming prelim, the office-hours schedule for next week is changing. The finalized schedule will be announced in Monday's lecture and posted to the online course calendar (www.cs.cornell.edu/courses/cs172/2007sp/calendar.htm). To facilitate your study planning, we are informing you now of the Sunday and Monday portions of next week's schedule:

Sunday (2/25/07)	8pm-9pm	3331 Balch	Rafael Frongillo
		(Tatkon Center)	
Monday (2/26/07)	2-2:50pm	328A Upson	Selina Lok
	4-6pm	328A Upson	Anton Morozov
	6-7pm	328A Upson	Jared Cantwell

I. Reminder: normalized term-frequency vectors

$$\overrightarrow{d} = \left(\frac{\operatorname{freq}(w_1 \in d)}{N(d)}, \frac{\operatorname{freq}(w_2 \in d)}{N(d)}, \dots, \frac{\operatorname{freq}(w_m \in d)}{N(d)}\right)$$

where $N(d) = \sqrt{\sum_{i=1}^m \operatorname{freq}(w_i \in d)^2}$ is the (vector-)length-normalization factor. Self-check: verify that \overrightarrow{d} is of unit length using the inner-product characterization of vector length. Note: we typically do not normalize the query vectors.

II. Example data $W: w_1: \text{cat}; w_2: \text{dog}; w_3: \text{news. Query: "cat dog". Corpus:$

d: "news news news cat dog"d': "cat dog news dog news"

III. Tf-idf weighting We¹ define IDF (w_i) , the inverse document frequency of term w_i , as $n/\text{doccount}(w_i)$, where doccount (w_i) is the number of documents in the n-document corpus that contain w_i . The resulting alternative to term-frequency weighting converts a document d to the vector

$$\overrightarrow{d} = \left(\frac{\text{freq}(w_1 \in d) \times \text{IDF}(w_1)}{N_I(d)}, \frac{\text{freq}(w_2 \in d) \times \text{IDF}(w_2)}{N_I(d)}, \dots, \frac{\text{freq}(w_m \in d) \times \text{IDF}(w_m)}{N_I(d)}\right)$$

where $N_I(d) = \sqrt{\sum_{i=1}^m (\text{freq}(w_i \in d) \times \text{IDF}(w_i))^2}$. Where no confusion can result, we will often drop the "I" subscript.

Note: we typically use non-normalized tf (*not* tf-idf) weighting for the query vector.

IV. Example for tf-idf computations Vocabulary: w_1 : "the"; w_2 : "wolf"; w_3 : "lady"; w_4 : "of"; w_5 : "shalott". Corpus:

$$d$$
: the wolf the wolf d'' : the the d' : lady lady, lady of shalott d''' : of the lady

Query: "the shalott painting"

We **don't**² have $IDF(w_1) = 1$, $IDF(w_2) = IDF(w_5) = 4$, etc. Note that the within-document repetitions of "the" don't matter. We **don't** find $\overrightarrow{d} \cdot \overrightarrow{q} = 2/\sqrt{68}$ and $\overrightarrow{d'} \cdot \overrightarrow{q'} = 4/\sqrt{84}$. What if we use tf weighting instead?

¹We are using a reduced form to simplify (your) calculations.

²I forgot to update some calculations when editing the example documents. We'll fix this next time.