Topics: Push-down automata (PDAs).
Announcements: The final exam is scheduled for December 20th, 9-11:30am, Olin 165.

The PDA formalism

Push-down automata are essentially limited versions of Turing machines. We only consider deterministic PDAs; that is, for any given configuration, at most one move, and perhaps no move, is possible.

Suppose we have a PDA P with
- m distinct states s_1, s_2, \ldots, s_m, where s_1 is the initial state and s_m is the accept state;
- an input alphabet consisting of ℓ distinct symbols a_1, a_2, \ldots, a_ℓ, with a_1 being the right-end marker \rhd;
- a stack alphabet consisting of k distinct symbols A_1, A_2, \ldots, A_k, with $A_1 = \pm$, the initial stack symbol (naturally, we assume $\ell \geq 2$ and $k, m \geq 1$). Then, a legal input to P would be $x = x_1 x_2 \ldots x_n$, each x_i drawn from among a_2, \ldots, a_ℓ (so the input can’t contain the end marker, but repeats are allowed).

P’s rules must all be of the form $(s, a_i, A_j) \rightarrow (s', \alpha)$ where s and s' are states, a_i is a single input symbol, A_j is a single stack symbol denoting what symbol is on top of the stack, and α, designating a replacement for A_j on the stack, is either a sequence of stack symbols or the word “pop”. No two rules can have the same left-hand side. If P had rules $(s_1, x_1, \pm) \rightarrow (s_2, A_7 A_5)$ and $(s_2, x_2, A_7) \rightarrow (s_{15}, \text{pop})$, then the first three configurations of P on input x would be as follows:

\[
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
| s_1 \pm \rhd \end{array}
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
| s_2 \pm \rhd \end{array}
\end{array}
\end{array}
\quad
\begin{array}{c}
\begin{array}{c}
\begin{array}{c}
| s_{15} \pm \rhd \end{array}
\end{array}
\end{array}
\end{array}
\]

P accepts x if it can start in the initial configuration corresponding to x and, obeying its rules, have the input head fall off the tape while changing to its accept state. If it would halt in any other configuration — i.e., it gets stuck somewhere on the input tape or falls off the tape but ends up in a state other than the accept state — it does not accept x.