Lecture 37

The End What Next
Announcements

- Project 3, Part 2 due today 5:59PM. Can use slip days to turn in by Tuesday.
- Final review session Tuesday 7-9PM, room TBA. Will be recorded.
- Final, Saturday 5/22, 1:30-4PM in Baker Lab 200
What did we miss?

- Multiple linear regression (15.5)
 - Using multiple numerical variables to predict a numerical variable
- Comparing two samples (Chapter 16)
 - How can we test if two samples are from the same distribution or different distributions?
- Some guest lectures data and surveillance/privacy
Data Science Lifecycle

Ask Question

Obtain Data

Understand World

Understand Data
<table>
<thead>
<tr>
<th>Applications (lectures and textbook)</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Text of books</td>
</tr>
<tr>
<td>• Movies and actors</td>
</tr>
<tr>
<td>• Population (US Census)</td>
</tr>
<tr>
<td>• Baby birth weight</td>
</tr>
<tr>
<td>• Bikeshare trips</td>
</tr>
<tr>
<td>• Chronic kidney disease</td>
</tr>
<tr>
<td>• Voter database</td>
</tr>
<tr>
<td>• Athlete performance</td>
</tr>
<tr>
<td>• Flight delays</td>
</tr>
<tr>
<td>• Exam scores</td>
</tr>
<tr>
<td>• Galton’s heights of parents and children</td>
</tr>
<tr>
<td>• Hybrid car efficiency</td>
</tr>
<tr>
<td>• Salaries (sports, city employees)</td>
</tr>
<tr>
<td>• SAT scores</td>
</tr>
<tr>
<td>• ...</td>
</tr>
</tbody>
</table>
Applications (assignments)

- Global poverty
- Death penalty and murder rates
- Movie scripts
- World population
- Farmers markets
- Size and age of universe
- Old Faithful eruptions
- Unemployment
- Restaurant inspections
- Sports betting
- ...
What is Data Science? [lec01]

Answering questions from data using computation

- **Exploration**
 - Identifying patterns in information
 - Uses visualizations

- **Inference**
 - Quantifying whether those patterns are reliable
 - Uses randomization

- **Prediction**
 - Making informed guesses
 - Uses machine learning
Data Exploration and Visualization

- Basics of Python programming: 3, 4.1-3
- Arrays: 4.4-6
- Tables: 5, 7
 - Concepts: columns, rows, labels
 - Operations: sort, where, group, pivot, join, apply
- Plots, charts, graphs: 6
 - Concepts: categorical, quantitative
 - Kinds: bar, scatter, line, histogram (density)

With this alone, you are now wizards
Data Exploration and Visualization

What next?

- **Programming in IS:** INFO 1300+2300+3300: learn to build web sites, databases, and advanced data visualization techniques
- **Programming in CS:** CS 1110+2110: learn to engineer software in Python and Java
- **On your own:** learn Pandas and Matplotlib
Inference

- **Experiments:** 2
 Treatment, control, confounding factors, association, causation

- **Probability:** 6.1-2, 8.4-5, 9.1, 9.3, 12
 Laws of probability, distributions, sampling, variability, mean, standard deviation, normal distribution, Central Limit Theorem, bounds

- **Hypothesis testing:** 10
 Null vs. alternative, test statistics, simulation, p-value

- **Estimation:** 11
 Bootstrap, percentiles, confidence interval
Inference

What next?

- **Statistics** (and math prereqs):
 AEM 2100, BTRY 3010/STSCI 2200, CEE 3040, ECON 3130, ENGRD 2700, HADM 2010, ILRST/STSCI 2100, MATH 1710 or 4710, PAM 2100, PSYCH 3500, SOC 3010

- **Learn R**: popular for statistics
Prediction

- **Regression:** 13
 - Correlation, regression line, RMSE, minimization, residuals, non-linear regression

- **Classification:** 15
 - Nearest neighbors, scaling, distance, decision boundary, train vs. test, accuracy
<table>
<thead>
<tr>
<th>Attributes</th>
<th>Categorical</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1. Linear regression</td>
</tr>
<tr>
<td>Many</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Attributes</td>
<td>Categorical</td>
<td>Quantitative</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
</tr>
<tr>
<td>1</td>
<td>1. Linear regression</td>
<td></td>
</tr>
<tr>
<td>Many</td>
<td>2. Nearest neighbor classification</td>
<td></td>
</tr>
</tbody>
</table>
Prediction

<table>
<thead>
<tr>
<th>Attributes</th>
<th>Categorical</th>
<th>Quantitative</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>1. Linear regression</td>
</tr>
<tr>
<td>Many</td>
<td>2. Nearest neighbor classification</td>
<td>3. Multiple regression (least squares, NN)</td>
</tr>
</tbody>
</table>
Prediction

What next?

- **Linear algebra:** MATH 2210, 2310, or 2940 (some calculus required)
- **Machine learning:** CS 4780, 4786, ORIE 4740, 4741, STSCI 4740, 4780 (and probably many others)
- **On your own:** try a self-paced tutorial or competition on Kaggle
Other Data Science courses

ORIE 2380: Urban Analytics (MQR-AS)
- Followup course; more sophisticated regression, classification, learning
- Lots of case studies

INFO 2950: Intro to Data Science
- More sophisticated treatment of similar material as 1380

ORIE 3120: Practical Tools for Operations Research, Machine Learning, and Data Science
- Data handling, more prediction methods
Other Data Science courses

HD/PSYCH 2930: Intro to Data Science for Social Scientists
 ● Looks similar to 1380, uses R instead of Python

AMST/ENGL/INFO 1350: Intro to Cultural Analytics
 ● Data science applied to understanding texts, humanistic research (same level as 1380).

INFO 3350: Text Mining History and Literature

STS 3440: Data Science and Society Lab
More Data Science

- Learn R or Julia: other popular data science platforms
- Cornell Data Science (CDS) project team (https://cornelldata.science), INFO 1998
Thank you to TAs!

Sotiris Ntanavaras, Misha Padidar
Nandan Aggarwal, Lea Jih-Viera, Minki Kim,
Addie Rodriguez
Thank you!

To all of you!

For being brave and doing difficult things in difficult circumstances.
Finally

Stay in touch!

● Tell us when 1380 helps you out in the future
● Ask us cool questions
● Show us cool data sets
● When you are back in Ithaca… Drop by our offices to tell us about the rest of your time at Cornell (and beyond)... We really do like to know.