Lecture 16

Estimation
Announcements

- Project 1, part 1 deadline now Sunday 3/21, midnight
- Project 1, part 2 deadline Friday 3/26, 5:59PM
- Prelim 1 grading in progress
Does sample look like population?
Large Random Samples

If the sample size is large,

then the empirical distribution of a uniform random sample

resembles the population distribution,

with high probability.
Distribution

- **A distribution** is a description of the likelihood of events.

- **Empirical distribution:**
 - Experimental: made from observations
 - Proportion of each event in sample

vs.

- **Probability distribution:**
 - Theoretical: made from mathematics
 - Probability of each event
Law of Large Numbers

If an experiment is repeated many times, independently and under the same conditions, then the proportion of times that an event occurs gets closer to the theoretical probability of the event.

Sometimes called *Law of Averages*
Terminology

Statistic
A number associated with the sample

Parameter
A number associated with the population

A statistic can be used as an estimate of a parameter
How many enemy planes?
Estimating enemy planes

- Population: planes with serial numbers 1, 2, 3, …, N.
- Parameter: N, which we don’t know
- Sample: planes spotted by our troops
- Statistic: ????

Assumption: The serial numbers of the planes that are spotted are a uniform random sample drawn with replacement from 1, 2, 3, …, N.
Discussion question

If you saw these serial numbers, what would be your estimate of N?

170 271 285 290 48
235 24 90 291 19

One idea: 291. Just go with the maximum.
Is max a good estimator?

Is it likely to be close to N?
- How likely?
- How close?

Option 1. Calculate the probabilities and draw a *probability histogram*.

Option 2. Simulate and draw an *empirical histogram*.

(Demo)
What would happen if we changed the sample size to 10 instead of 30?

- The histogram would spread out, with more area to the left of 300.
- The histogram would spread out, with more area to the right of 300.
- The histogram would compress, with more area concentrated around 300.
- Not predictable
- None of the above
Verdict on max

- The largest serial number observed is likely to be close to N.
- But it is also likely to underestimate N.
New idea

- Maybe the average of the sample resembles the average of the population
- Average of population is about N/2

New statistic: 2 * average(samples)

(Demo)
Bias

- **Biased estimate**: On average across all possible samples, the estimate is either too high or too low.
- Bias creates a systematic error in one direction.
- Good estimators have low bias.
Variance

- Value of an estimate *varies* from one sample to another
- High variability makes it hard to estimate accurately
- Good estimators have low variance
Bias-Variance Tradeoff

- **max** has low variability, but is biased
- **2*average** has little bias, but is highly variable
- Life is tough!