

DSFA Spring 2020

Lecture 26

The End What Next

What did we miss?

- Multiple linear regression (15.5)
 - Using multiple numerical variables to predict a numerical variable
- Inference for regression (Chapter 14)
 - Regression on a sample; what can we say about the slope of the line for the population?
- Some guest lectures on examples of data science research, and data and surveillance/privacy

Data Science Lifecycle

Applications (lectures and textbook)

- Text of books
- Movies and actors
- Population (US Census)
- Baby birth weight
- Bikeshare trips
- Chronic kidney disease
- Voter database
- Athlete performance
- Flight delays

- Exam scores
- Galton's heights of parents and children
- Hybrid car efficiency
- Salaries (sports, city employees)
- SAT scores
- • •

Applications (assignments)

- Global poverty
- Death penalty and murder rates
- Movie scripts
- World population
- Farmers markets
- Size and age of universe

- Old Faithful eruptions
- Unemployment
- Restaurant inspections
- Sports betting
- ...

What is Data Science? [lec01]

Answering questions from data using computation

• Exploration

- Identifying patterns in information
- Uses visualizations
- Inference
 - Quantifying whether those patterns are reliable
 - Uses randomization

• Prediction

- Making informed guesses
- Uses machine learning

Data Exploration and Visualization

- Basics of Python programming: 3, 4.1-3
- Arrays: 4.4-6
- Tables: 5, 7

Concepts: columns, rows, labels Operations: sort, where, group, pivot, join, apply

• Plots, charts, graphs: 6

Concepts: categorical, quantitative Kinds: bar, scatter, line, histogram (density)

With this alone, you are now wizards

Data Exploration and Visualization

What next?

- Programming in IS: INFO 1300+2300+3300: learn to build web sites, databases, and advanced data visualization techniques
- Programming in CS: CS 1110+2110: learn to engineer software in Python and Java
- On your own: learn Pandas and Matplotlib

Inference

• Experiments: 2

Treatment, control, confounding factors, association, causation

• Probability: 6.1-2, 8.4-5, 9.1, 9.3, 12

Laws of probability, distributions, sampling, variability, mean, standard deviation, normal distribution, Central Limit Theorem, bounds

Hypothesis testing: 10

Null vs. alternative, test statistics, simulation, p-value

• Estimation: 11

Bootstrap, percentiles, confidence interval

Inference

Inference

What next?

- Statistics (and math prereqs): AEM 2100, BTRY 3010/STSCI 2200, CEE 3040, ECON 3130, ENGRD 2700, HADM 2010, ILRST/STSCI 2100, MATH 1710 or 4710, PAM 2100, PSYCH 3500, SOC 3010
- Learn R: popular for statistics

• Regression: 13

Correlation, regression line, RMSE, minimization, residuals, non-linear regression

• Classification: 15

Nearest neighbors, scaling, distance, decision boundary, train vs. test, accuracy

Attributes

PredictionCategoricalQuantitative11. Linear regressionManyI. Linear regression

Pred	iction
1 100	

		Categorical	Quantitative
	1		1. Linear regression
Allfibutes	Many	2. Nearest neighbor classification	

Prediction

		Categorical	Quantitative
	1		1. Linear regression
Aunoules	Many	2. Nearest neighbor classification	3. Multiple regression (least squares, NN)

What next?

- Linear algebra: MATH 2210, 2310, or 2940 (some calculus required)
- Machine learning: CS 4780, 4786, ORIE 4740, 4741, STSCI 4740, 4780 (and probably many others)
- On your own: try a self-paced tutorial or competition on Kaggle

Data Science Venn Diagram v2.0

Other Data Science courses

ORIE 2380: Urban Analytics (MQR-AS)

- Followup course; more sophisticated regression, classification, learning
- Lots of case studies
- INFO 2950: Intro to Data Science

 More sophisticated treatment of similar material as 1380 ORIE 3120: Practical Tools for Operations Research, Machine Learning, and Data Science

• Data handling, more prediction methods

Other Data Science courses

HD/PSYCH 2930: Intro to Data Science for Social Scientists

- Looks similar to 1380, uses R instead of Python AMST/ENGL/INFO 1350: Intro to Cultural Analytics
- Data science applied to understanding texts, humanistic research (same level as 1380).
- INFO 3350: Text Mining History and Literature STS 3440: Data Science and Society Lab

More Data Science

- Learn R or Julia: other popular data science platforms
- Cornell Data Science (CDS) project team (https://cornelldata.science), INFO 1998

Thank you to TAs!

Ben Baer, Artem Bolshakov

Julie Barron, Taeho Kim, Daniel Sanky, Kate Schrage, Anders Wikum, Yao Yu Yeo

Thank you!

To all of you!

For being brave and doing difficult things in difficult circumstances.

Finally

Stay in touch! On behalf of Prof. Entner and myself...

- Tell us when 1380 helps you out in the future
- Ask us cool questions
- Show us cool data sets
- When you are back in Ithaca... Drop by our offices to tell us about the rest of your time at Cornell (and beyond)... We really do like to know.