

DSFA Spring 2020

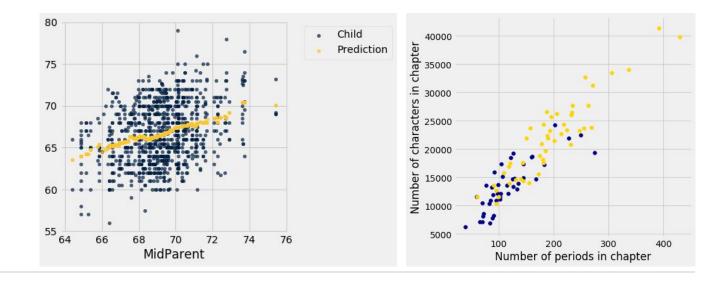
Lecture 24

Residuals

Prediction

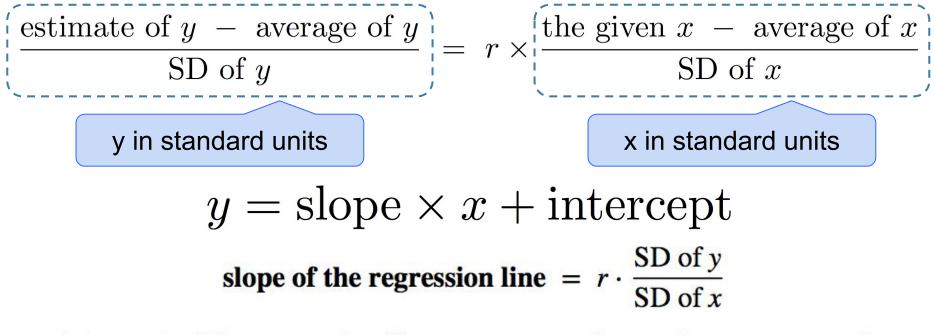
If we have a line describing the relation between two

variables, we can make predictions



Regression Line Equation

In original units, the regression line has this equation:



intercept of the regression line = average of y - slope \cdot average of x

Errors and Predictions

- error = actual value prediction
- RMSE = root mean square error
- Regression line has the minimum RMSE of all lines
- Names:
 - Regression line
 - Least squares line
 - "Best fit" line

Non-linear regression

Residuals

Residuals

- Error in regression prediction
- residual
 - = observed *y* regression prediction of *y*
 - = vertical distance between each point and the best line

Residual Plot

A scatter diagram of residuals

- Should look like an unassociated blob for linear relations
- But still contains patterns for non-linear relations
- Can reveal whether linear regression is appropriate

(Demo)

Mean and Stdev of Residuals

No matter what the scatter looks like...

- mean(residuals) = 0
- SD(residuals) = RMSE = SD(y) * sqrt(1 r^2)

Clustering around line

- "The correlation measures how clustered the points are about a straight line."
- SD(residuals) = RMSE = SD(y) * sqrt(1 r^2)
- so, RMSE / SD(y) = sqrt(1 r^2)

Bounds

Rule of thumb:

- About 68% of values within 1 RMSE of prediction
- About 95% of values within 2 RMSE of prediction
- etc.

What we can learn from *r*

- How clustered points are around a line
- How *y* depends on *x*
- How accurate linear regression predictions will be

