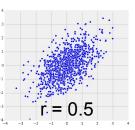
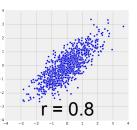
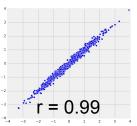
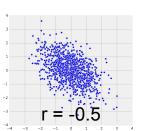
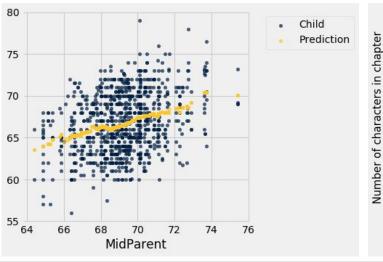

Lecture 23

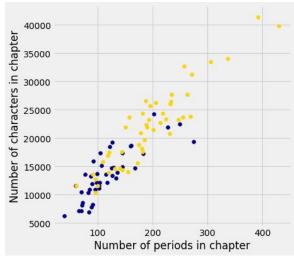

Linear Regression


The Correlation Coefficient r


- Measures linear association
- Based on standard units
- $-1 \le r \le 1$
 - \circ r = 1: scatter is perfect straight line sloping up
 - r = -1: scatter is perfect straight line sloping down
- *r* = 0: No linear association; *uncorrelated*



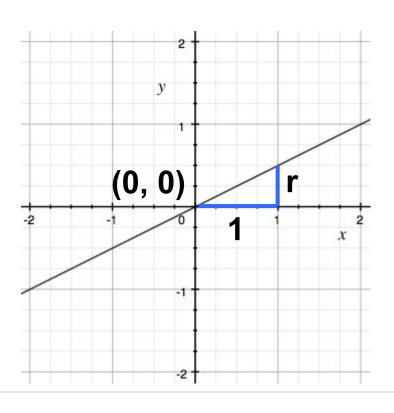

Definition of r


Correlation Coefficient (r) =

average pro	oduct of	x in standard units	and	y in standard units
-------------	----------	---------------------------	-----	---------------------------

Measures how clustered the scatter is around a straight line

If we have a line describing the relation between two variables, we can make predictions



- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute r
 - Predict that y = r * x
- Why is that a line?

Algebra review:

Equation of a Line

$$y = r * x$$

In general:

$$y = a * x + b$$
(a is slope, b is intercept)

- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute r
 - Predict that y = r * x
- Why is that a line?
- Why use that line?

- Problem: given a known x value, predict y, where both are in standard units
- Solution:
 - Compute *r*
 - Predict that y = r * x
- Why is that a line?
- Why use that line?
 - It is a version of the graph of averages, smoothed to a line (Demo)

- **Predict** y = r * x (in standard units)
- If r = .75 and x is 2 std above mean, then prediction for y is 1.5 std above mean
- So y predicted to be closer to its mean than x is

- "Regression to the mean"
 - Children with exceptionally tall parents tend not to be as tall
 - Galton called it "regression to mediocrity"

Linear Regression

```
(y in su) = r * (x in su)
```

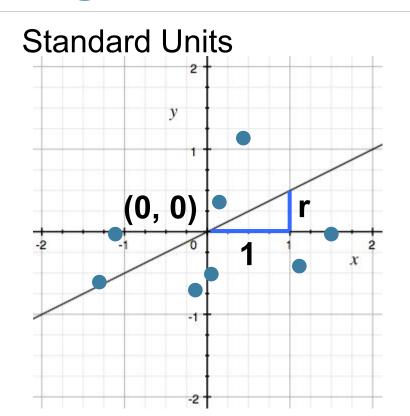
$$x - mean(all x)$$

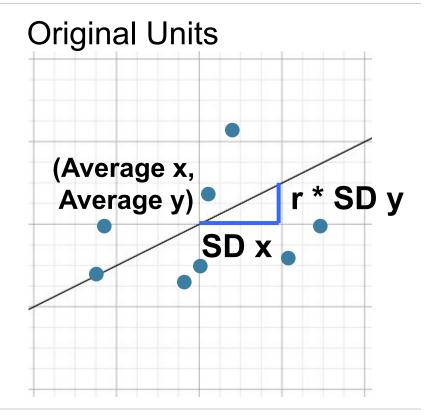
(y in su) = r * $\frac{x - mean(all x)}{std(all x)}$

$$y - mean(all y)$$
 $x - mean(all x)$
 $= r *$ $=$ $std(all y)$ $std(all x)$

$$y - mean(all y)$$
 $x - mean(all x)$
 $= r *$ $=$ $std(all y)$ $std(all x)$

Do some algebra to put that in the form y = slope * x + intercept...

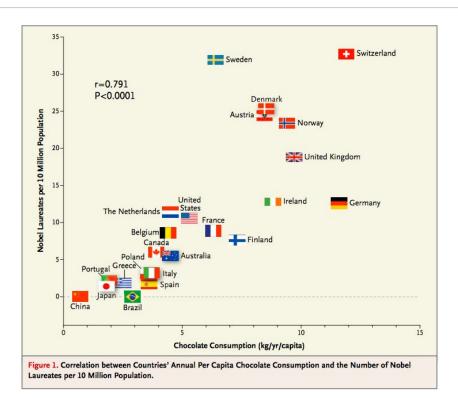

Slope and Intercept


$$y = slope * x + intercept$$

slope of the regression line =
$$r \cdot \frac{SD \text{ of } y}{SD \text{ of } x}$$

intercept of the regression line = average of y - slope · average of x

Regression Line



Abuses of r

- Summarizing non-linear data with r
- Eliminating outliers to "improve" *r*
- Drawing conclusions about individuals based on data about groups (ecological correlations)
- Jumping to conclusions about causality

Correlation is not causation

Quantifying Error

Error in Prediction

- How good is the regression line at making predictions?
 - Hard to say for unknown data
 - But easy for data we already have

error = actual value - prediction

Error in Prediction

- How good is the regression line at making predictions?
 - Hard to say for unknown data
 - But easy for data we already have

- error = actual value prediction
- RMSE = root mean square error
- RMSE = root mean square of deviation from prediction

RMSE

RMSE = root mean square error

```
RMSE = std(y) * sqrt(1 - r^2)
```

- If r = 1, what is RMSE? 0
- If r = 0, what is RMSE? std(y)

Compare regression line to other lines using RMSE...

Line with smallest RMSE?

- SciPy function minimize (f) returns the value x that produces the minimum output f(x) from f
- Also works for functions that make multiple arguments
- How to use to find best line:
 - Write function rmse(a, b) that returns the RMSE for line with slope a and intercept b
 - Call minimize (rmse) and get output array [a₀, b₀]
 - a₀ is slope and b₀ intercept of line that minimizes RMSE

Regression line

- Regression line has the minimum RMSE of all lines
- Names:
 - Regression line
 - Least squares line
 - "Best fit" line