

## Lecture 22

Correlation

## Prediction

- Guess outcomes in the future, based on available data
- Our simple goal: predict value of one variable based on another
(Demo)





## Prediction

If we have a line describing the relation between two
variables, we can make predictions


## Relation Between Two Variables

Visualize then quantify

- Any discernible pattern?
- Simplest kind of pattern: Linear? Non-linear?
(Demo)


## The Correlation Coefficient r

- Developed by Karl Pearson (1857-1936) based on work of Francis Galton (1822-1911)
- Measures linear association
- $-1 \leq r \leq 1$
- $r=1$ : scatter is perfect straight line sloping up
- $r=-1$ : scatter is perfect straight line sloping down
- $r=0$ : No linear association; uncorrelated
(Demo)


## Definition of $r$

Correlation Coefficient $(r)=$

| average <br> of | (array) <br> product of | x in <br> standard <br> units | and | y in <br> standard <br> units |
| :---: | :---: | :---: | :---: | :---: |

Measures how clustered the scatter is around a straight line

## Properties of $r$

- $r$ is a pure number, with no units
- $r$ is not affected by changing units of measurement
- $r$ is not affected by switching the horizontal and vertical axes


## (Demo)

## Prediction

## Prediction

- Problem: given a known $x$ value, predict $y$, where both are in standard units
- Solution:
- Compute $r$
- Predict that $y=r^{*} x$
- Why is that a line?


## Algebra review:

## Equation of a Line



$$
y=r^{*} x
$$

In general:
$y=a * x+b$
( $a$ is slope, $b$ is intercept)

## Prediction

- Problem: given a known $x$ value, predict $y$, where both are in standard units
- Solution:
- Compute $r$
- Predict that $y=r^{*} x$
- Why is that a line?
- Why use that line?


## (Demo)

## Prediction

- Problem: given a known $x$ value, predict $y$, where both are in standard units
- Solution:
- Compute $r$
- Predict that $y=r^{*} x$
- Why is that a line?
- Why use that line?
- It is a version of the graph of averages, smoothed to a line
(Demo)


## Prediction

Predict $y=r^{*} x \quad$ (in standard units)

Example:

- $x=2$ (in standard units)
- $r=.75$
- What is the prediction for $y$ (in standard units)?
- A. 0.0
- B. 0.75
- C. 1.5
- D. 2.0


## Prediction

- Predict $y=r^{*} X \quad$ (in standard units)
- Example:
- A course has a typical prelim (mean=70, std=10), and a hard final (mean=50, std=12)
- The scores on the exams look linearly related when visualized, with $r=.75$
- Predict a student's final exam score, given that their prelim score was 90 (go ahead and work on that)


## Prediction

- Prelim: mean $=70$, std=10
- $x=90=70+2 * 10$ in original units $=2$ standard units
- Prediction:
- $y=r$ * $x=.75$ * $2=1.5$ standard units
- Final: mean=50, std=12
- $y=50+1.5$ * $12=68$ in original units


## Prediction

- Predict $y=r^{*} x \quad$ (in standard units)
- If $r=.75$ and $x$ is 2 std above mean, then prediction for $y$ is 1.5 std above mean
- So $y$ predicted to be closer to mean than $x$
- "Regression to the mean"
- Children with exceptionally tall parents tend not to be as tall
- Galton called it "regression to mediocrity"

