Lecture 20
The Normal Distribution
Standard Deviation (Review)
How Far from the Average?

- Standard deviation (SD) measures roughly how far the data are from their average.

\[SD = \sqrt{\frac{\sum (x_i - \mu)^2}{N}} \]

- SD has the same units as the data.
How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data are in the range “average ± a few SDs”

Chebyshev’s Inequality
No matter what the shape of the distribution, the proportion of values in the range “average ± z SDs” is at least $1 - 1/z^2$
Chebyshev’s Bounds

<table>
<thead>
<tr>
<th>Range</th>
<th>Proportion</th>
</tr>
</thead>
<tbody>
<tr>
<td>average ± 2 SDs</td>
<td>at least 1 - 1/4 (75%)</td>
</tr>
<tr>
<td>average ± 3 SDs</td>
<td>at least 1 - 1/9 (88.888…%)</td>
</tr>
<tr>
<td>average ± 4 SDs</td>
<td>at least 1 - 1/16 (93.75%)</td>
</tr>
<tr>
<td>average ± 5 SDs</td>
<td>at least 1 - 1/25 (96%)</td>
</tr>
</tbody>
</table>

No matter what the distribution looks like
Standard Units
Standard Units

- How many SDs above average?
- \(z = (\text{value} - \text{mean})/\text{SD} \)
 - Negative \(z \): value below average
 - Positive \(z \): value above average
 - \(z = 0 \): value equal to average
- When values are in standard units: average = 0, SD = 1
- Chebyshev: At least 96% of the values of \(z \) are between -5 and 5 (Demo)
Discussion Question

Find whole numbers that are close to:

(a) the average age
(b) the SD of the ages

(Demo)
The SD and the Histogram

- Usually, it's not easy to estimate the SD by looking at a histogram.

- But if the histogram has a bell shape, then you can.
The SD and Bell-Shaped Curves

If a histogram is bell-shaped, then

- the average is at the center
- the SD is the distance between the average and the points of inflection on either side (i.e. where it stops curving down and starts curving up).
The Normal Distribution
The Standard Normal Curve

A beautiful formula that we won’t use at all:

\[
\phi(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}, \quad -\infty < z < \infty
\]
The Standard Normal Curve
Normal Proportions
How Big are Most of the Values?

No matter what the shape of the distribution, the bulk of the data are in the range “average ± a few SDs”

If a histogram is bell-shaped, then

- Almost all of the data are in the range “average ± 3 SDs”
Bounds and Normal Approximations

<table>
<thead>
<tr>
<th>Percent in Range</th>
<th>All Distributions</th>
<th>Normal Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>average ± 1 SD</td>
<td>at least 0%</td>
<td>about 68%</td>
</tr>
<tr>
<td>average ± 2 SDs</td>
<td>at least 75%</td>
<td>about 95%</td>
</tr>
<tr>
<td>average ± 3 SDs</td>
<td>at least 88.888...%</td>
<td>about 99.73%</td>
</tr>
</tbody>
</table>
A “Central” Area

Average ± 2SDs: 95% of the area

(Demo)
Central Limit Theorem
Central Limit Theorem

If the sample is
- large, and
- drawn at random with replacement,

Then, regardless of the distribution of the population,

the distribution of the sample sum
(or of the sample average) is roughly bell-shaped

(Demo)
Distribution of the Sample Average
Why is There a Distribution?

- You have only one random sample, and it has only one average.

- But **the sample could have come out differently**.

- And then the sample average might have been different.

- So there are many possible sample averages.
Distribution of the Sample Average

- Imagine all possible random samples of the same size as yours. There are lots of them.

- Each of these samples has a mean.

- The *distribution of the sample average* is the distribution of the means of all the possible samples.
Shape of the Distribution
Specifying the Distribution

Suppose the random sample is large.

- The Central Limit Theorem tells us that the distribution of the sample average is roughly bell shaped.

- Important questions remain:
 - Where is the center of that bell curve?
 - How wide is that bell curve?
Center of the Distribution
The distribution of the sample average is roughly a bell curve centered at the population average.
Variability of the Sample Average
Variability of the Sample Average

- Fix a large sample size.
- Draw all possible random samples of that size.
- Compute the average of each sample.
- You’ll end up with a lot of averages.
- The distribution of those is called the distribution of the sample average.
- It’s roughly normal, centered at the population average.
- $SD = \frac{\text{population SD}}{\sqrt{\text{sample size}}}$