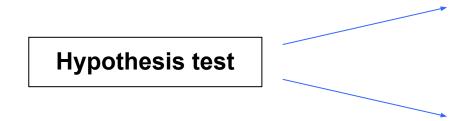


DSFA Spring 2020

#### Lecture 17

Percentiles and the Bootstrap

#### **Conclusions From a Test**



**Fail to reject** the null hypothesis (data are not inconsistent with the null hypothesis - inconclusive)

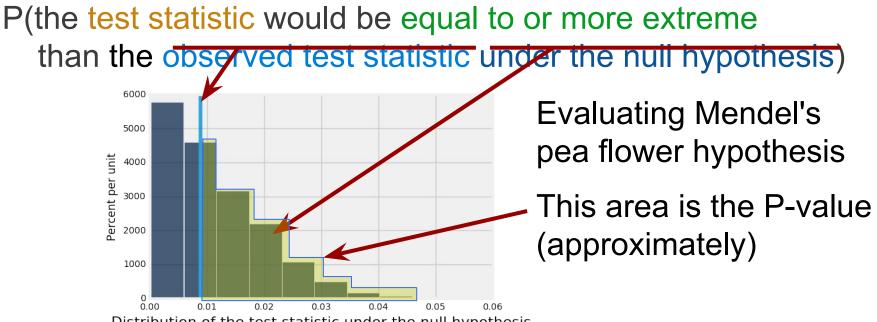
**Reject** the null hypothesis (data are inconsistent with the null hypothesis - accept the alternative)

### **Definition of** *P***-value**

The P-value is the chance,

- under the null hypothesis,
- that the test statistic
- is equal to the value that was observed in the data or is even further in the direction of the alternative.

## **Quantifying Conclusions**

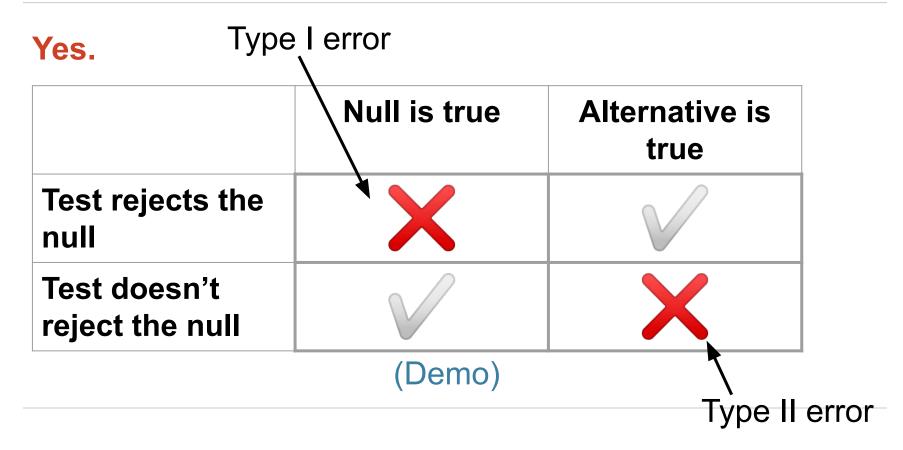


Distribution of the test statistic under the null hypothesis

## **Conventions of Consistency**

- "Inconsistent": The test statistic is in the tail of the null distribution.
- "In the tail," first convention:
  - The area in the tail is less than 5%.
  - The result is "statistically significant."
- "In the tail," second convention:
  - The area in the tail is less than 1%.
  - The result is "highly statistically significant."

#### **Can the Conclusion be Wrong?**



## **An Error Probability**

- The cutoff for the P-value is an error probability.
- If:
  - your **cutoff is 5%** (your significance level)
  - and the null hypothesis happens to be true
  - (but you don't know that)
- then there is about a 5% chance that your test will reject the null hypothesis anyway.

# **Type I and Type II errors**

• The significance level (or p-value cutoff) is the probability of a Type I error

Type I error = Reject null when it is true

• What if the alternative is true?

```
Type II error = Fail to reject null when it is false
```

### **More on P-Hacking**

Suppose you conduct 10 independent hypothesis test, each at a 5% significance level; i.e. the null hypothesis is rejected if p < 0.05.

The probability that at least one null hypothesis is rejected is

- A. 0.05 or less
- B. Between 0.05 and 0.4
- C. Between 0.4 and 0.5
- D. Between 0.5 and 0.95
- E. 0.95 or more

#### **Percentiles**

## **Computing Percentiles**

The 80th percentile of a set of numbers is the smallest value in the sample that is at least as large as 80% of the sample

For s = [1, 7, 3, 9, 5], percentile (80, s) is 7

Size of set

Percentile

The 80th percentile is ordered element 4: (80/100) \* 5

For a percentile that does not exactly correspond to an element, take the next greater element instead

#### The percentile Function

- The *p*th percentile is the smallest value in the sample at least as large as *p*% of the values in the sample
- Function in the datascience module:

percentile(p, values)

• p is between 0 and 100

Returns the *p*th percentile of the array

#### **Discussion Question**

Which are **True**, when s = [1, 7, 3, 9, 5]?

percentile(10, s) == 0

percentile(39, s) == percentile(40, s)

percentile(40, s) == percentile(41, s)

percentile(50, s) == 5

(Demo)

### **Estimation (Review)**

#### **Inference: Estimation**

- What is the value of a population parameter?
- If you have a census (that is, the whole population):
  Just calculate the parameter and you're done
- If you don't have a census:
  - Take a random sample from the population
  - Use a statistic as an **estimate** of the parameter



## Variability of the Estimate

- One sample  $\rightarrow$  One estimate
- But the random sample could have come out differently
- And so the estimate could have been different
- Main question:
  - How different could the estimate have been?
- The variability of the estimate tells us something about how accurate the estimate is:

(Demo)

estimate = parameter + error

## Where to Get Another Sample?

- One sample  $\rightarrow$  One estimate
- To get many values of the estimate, we needed many random samples
- Can't go back and sample again from the population:
  No time, no money
- Stuck?

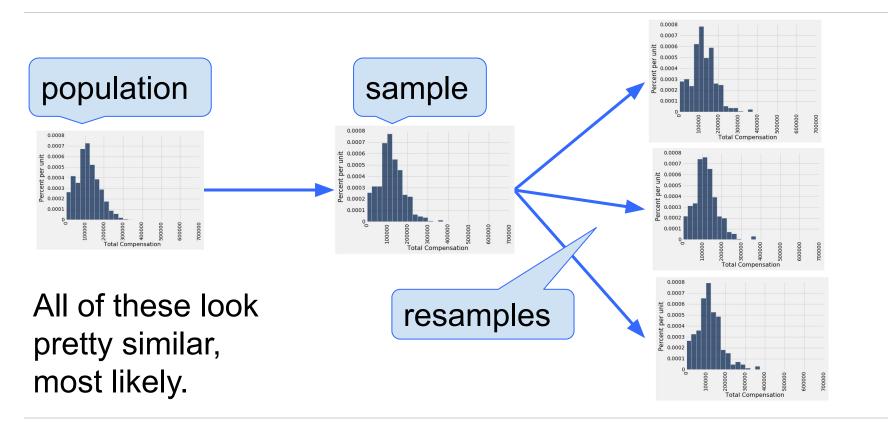
The Bootstrap

### **The Bootstrap**

• A technique for simulating repeated random sampling

- All that we have is the original sample
  - ... which is large and random
  - Therefore, it probably resembles the population
- So we sample at random from the original sample!

## Why the Bootstrap Works



# **Key to Resampling**

- From the original sample,
  - draw at random
  - with replacement
  - as many values as the original sample contained
- The size of the new sample has to be the same as the original one, so that the two estimates are comparable

