Lecture 11

Probability

Announcements

- Prelim 1 tonight
- 7:30-9PM
- Room by last name:
- A-Q, Goldwin Smith G64
- R-Z, Goldwin Smith 142
- You can bring one sheet of notes, double-sided, made yourself
- You will be provided with a list of table functions
- Assigned seating; please arrive a few minutes early
- Project 1 Part 2 due next Friday, 3/6, 5:59PM

Recipes

$21 / 4$ cups all-purpose flour

1 teaspoon baking soda

1 teaspoon salt

1 cup (2 sticks) butter, softened

$3 / 4$ cup granulated sugar

$3 / 4$ cup packed brown sugar

1 teaspoon vanilla extract

2 large eggs

2 cups (12-oz. pkg.) NESTLÉ ${ }^{\text {© }}$ TOLL
HOUSE ${ }^{\oplus}$ Semi-Sweet Chocolate Morsels

1 cup chopped nuts

PREHEAT oven to $375^{\circ} \mathrm{F}$.

COMBINE flour, baking soda and salt in small bowl. Beat butter, granulated sugar, brown sugar and vanilla extract in large mixer bowl until creamy. Add eggs, one at a time, beating well after each addition. Gradually beat in flour mixture. Stir in morsels and nuts. Drop by rounded tablespoon onto ungreased baking sheets.

BAKE for 9 to 11 minutes or until golden brown. Cool on baking sheets for 2 minutes; remove to wire racks to cool completely.

PAN COOKIE VARIATION: Preheat oven to 350° F. Grease 15×10-inch jelly-roll pan. Prepare dough as above. Spread into prepared pan. Bake for 20 to 25 minutes or until golden brown. Cool in pan on wire rack. Makes 4 dozen bars.

SLICE AND BAKE COOKIE VARIATION:

PREPARE dough as above. Divide in half; wrap in waxed paper. Refrigerate for 1 hour or until firm. Shape each half into 15 -inch log; wrap in wax paper. Refrigerate for 30 minutes.* Preheat oven to 375° F. Cut into $1 / 2$-inch-thick slices; place on ungreased baking sheets. Bake for 8 to 10 minutes or until golden brown. Cool on baking sheets for 2 minutes; remove to wire racks to cool completely. Makes about 5 dozen cookies.

Recipe instructions

COMBINE flour, baking soda and salt in small bowl. Beat butter, granulated sugar, brown sugar and vanilla extract in large mixer bowl until creamy. Add eggs, one at a time, beating well after each addition. Gradually beat in flour mixture. Stir in morsels and nuts. Drop by rounded tablespoon onto ungreased baking sheets.

BAKE for 9 to 11 minutes or until golden brown. Cool on baking sheets for 2 minutes; remove to wire racks to cool completely.

Algorithm

Rules or a recipe for performing computation

Ideas we see in cookie recipe:

- Iteration: do something many times
- Conditionals: decide whether something is true, and maybe do something different
- Variability or randomness: some tasks might not be completely predictable

Random Selection

Random Selection

np.random. choice

- Selects at random
- with replacement
- from an array
- a specified number of times
np.random. choice (some_array, sample_size)
(Demo)

Control Statements

Control Statements

These statements control the sequence of computations that are performed in a program

- The keywords if and for begin control statements
- The purpose of if is to define computations that can choose different behaviors
- The purpose of for is to perform a computation for every element in a collection
(Demo)

The Monty Hall Problem

Monty Hall Problem

A. Switch?
B. Stay?
C. Doesn't matter

Probability

Probability

- Lowest value: 0
- Chance of event that is impossible
- Highest value: 1 (or 100\%)
- Chance of event that is certain
- If an event has chance 70%, then the chance that it doesn't happen is
- $100 \%-70 \%=30 \%$
- $1-0.7=0.3$

Equally Likely Outcomes

Assuming all outcomes are equally likely, the chance of an event A is:
number of outcomes that make A happen
$P(A)=$ total number of outcomes
(Demo)

Multiplication Rule

Chance that two events A and B both happen
= $\mathrm{P}(\mathrm{A}$ happens $)$
$x \mathrm{P}(B$ happens given that A has happened $)$

- The answer is less than or equal to each of the two chances being multiplied
(Demo)

Fraction of a Fraction

Addition Rule

If event A can happen in exactly one of two ways, then

$$
P(A)=P(\text { first way })+P(\text { second way })
$$

The answer is greater than or equal to the chance of each individual way

Example: At Least One Head

- In 3 tosses:
- Any outcome except TTT
- $\mathrm{P}(\mathrm{TTT})=(1 / 2) \times(1 / 2) \times(1 / 2)=(1 / 2)^{3}=1 / 8$
- $P($ at least one head $)=1-P($ TTT $)=7 / 8=87.5 \%$
- In 10 tosses:
- $P($ TTTTTTTTTT $)=(1 / 2)^{10}$
- $P($ at least one head $)=1-(1 / 2)^{10}=99.90 \%$

Addition Rule

Chance that either A or B (inclusive)

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

Simplifies to $P(A$ or $B)=P(A)+P(B)$ if A and B are disjoint (mutually exclusive)

- The answer is greater than or equal to the chance of each individual way

Example: Roll a pair of dice

A = at least one 2
$B=$ sum less than or equal to 4
$C=$ double

What are $\mathrm{P}(A), \mathrm{P}(B)$ and $\mathrm{P}(C)$?
$\mathrm{P}(A$ and $B), \mathrm{P}(A$ or $B), \mathrm{P}(B$ and $C), \mathrm{P}(B$ or $C)$?

