Announcements
Correlation (Review)
The Correlation Coefficient r

- Measures linear association
- Based on standard units
- $-1 \leq r \leq 1$
 - $r = 1$: scatter is perfect straight line sloping up
 - $r = -1$: scatter is perfect straight line sloping down
- $r = 0$: No linear association; uncorrelated
Definition of \(r \)

Correlation Coefficient \((r)\) =

<table>
<thead>
<tr>
<th>average of</th>
<th>product of</th>
<th>(x) in standard units</th>
<th>and</th>
<th>(y) in standard units</th>
</tr>
</thead>
</table>

Measures how clustered the scatter is around a straight line
Properties of Correlation
Properties of r

- r is a pure number, with no units
- r is not affected by changing units of measurement
- r is not affected by switching the horizontal and vertical axes
Interpreting r

Watch out for:

- Jumping to conclusions about causality
- Non-linearity
- Outliers
- Ecological correlations, based on aggregates or averaged data
Interpreting r

Don't jump to conclusions about causality
Interpreting r

Watch out for non-linearity.

$r = 0.0$
Interpreting r

Watch out for outliers.
Interpreting r

Watch out for ecological correlations, based on aggregates or averaged data.

$r = 0.98$
Prediction
Galton's Heights
Galton's Heights
Galton's Heights
Where is the prediction line?

\[r = 0.99 \]
Where is the prediction line?

$r = 0.0$
Where is the prediction line?

$r = 0.5$
Where is the prediction line?

$r = 0.2$
Nearest Neighbor Regression

A method for prediction:

● Group each x with a representative x value (rounding)
● Average the corresponding y values for each group

For each representative x value, the corresponding prediction is the average of the y values in the group.

Graph these predictions.

If the association between x and y is linear, then points in the graph of averages tend to fall on the regression line.
Regression to the Mean

A statement about x and y pairs

- Measured in *standard units*
- Describing the deviation of x from 0 (the average of x's)
- And the deviation of y from 0 (the average of y's)

On average, y deviates from 0 less than x deviates from 0

$$y^{(su)} = r \times x^{(su)}$$

Regression Line

Correlation

Not true for all points — a statement about averages
Linear Regression

(Demo)
Slope & Intercept
Regression Line Equation

In original units, the regression line has this equation:

\[
\frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} = r \times \frac{\text{the given } x - \text{average of } x}{\text{SD of } x}
\]

y in standard units

\[
\frac{\text{estimate of } y - \text{average of } y}{\text{SD of } y} = r \times \frac{\text{the given } x - \text{average of } x}{\text{SD of } x}
\]

x in standard units

Lines can be expressed by slope & intercept

\[
y = \text{slope} \times x + \text{intercept}
\]
Regression Line

Standard Units

- Point: (0, 0)
- Slope: \(r \)

Original Units

- Point: (Average \(x \), Average \(y \))
- Slope: \(r \times \text{SD} \ y \)
- SD \(x \)
Slope and Intercept

estimate of $y = \text{slope} \times x + \text{intercept}$

slope of the regression line $= r \cdot \frac{\text{SD of } y}{\text{SD of } x}$

intercept of the regression line $= \text{average of } y - \text{slope} \times \text{average of } x$

(Demo)