
CS/INFO 1305 Programming Exercise 3
Due Sunday, July 29, at 10pm
Submit either Level 1 or Level 2.

Different ways to create vectors

Type the following expressions in the Matlab Command Window to see what kind of vectors they create. Write
the resulting vectors (and answer the questions) on the blanks.

a= zeros(1,4) %________________

b= zeros(4,1) %________________ What do the arguments specify?________________________

c= ones(1,3) %________________

d= 10:2:17 %________________

f= 10:-1:17 %________________

g= [10 20 40] %________________ What does the space separator do?_____________________

h= [10,20,40] %________________ What does the comma separator do?_____________________

k= [10;20;40] %________________ What does the semi-colon separator do?________________

m= [a g] %________________

n= [b; k] %________________

p= [a k] %ERROR--mismatched dimensions! (Attempt to concatenate a column to a row)

q= b’ %________________ This operation is called "transpose"

r= [a b’] %________________

1 Level 1

1.1 Evaluate a polynomial

Write a function evalPoly to evaluate an nth order polynomial of x:

a0 + a1x + a2x
2 + · · ·+ anx

n

The two input parameters are coef and x. coef is a vector or real values of length n + 1 and contains the
coefficients of the polynomial. coef(1) corresponds to a0, the coefficient for the term x0. Input parameter x is
a real value. Function evalPoly returns the value of the polynomial evaluated at x.

1.2 Minimum value in a vector

Implement the following function:

function [val, k] = findMin(v)

% Find the minimum value in vector v. v is a vector of real numbers. length(v)>0.

% val is the minimum value in v.

% k is the first position at which the minimum value appears.
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1.3 Biggest rectangle

Implement the following function:

function [a,b,c,d] = biggestRectangle(x,y,v,w)

% Find the rectangle with the largest area.

% x,y,v,w are vectors of the same length containing real numbers. length(x)>0.

% The points (x(1),y(1)) and (v(1),w(1)) are the opposing corners of rectangle 1,

% the points (x(2),y(2)) and (v(2),w(2)) are the opposing corners of rectangle 2,...

% the points (x(k),y(k)) and (v(k),w(k)) are the opposing corners of rectangle k.

% (a,b) and (c,d) are the opposing corners of the biggest rectangle in the set of

% rectangles defined by x,y,v,w.

2 Level 2: Gas Molecules Simulation

You will develop a simulation of the movement of gas molecules in a confined 2-
dimensional space. (Or you can think about it as the motion of rigid, frictionless
billiard balls.) The molecules will bounce off walls and one another. In our
simplified model, the collisions are fully “elastic”—there is no loss of energy or
momentum.

You will simulate the molecules over T time periods. The simulation has this
organization:

• Given initial positions and velocities

• Draw all the molecules

• For each time period

– For each molecule

∗ Check for bouncing against border; update velocities and positions as necessary

∗ Check for collision with other molecules; update velocities as necessary

∗ Calculate new position

– Draw all the molecules

Using good program development practice, we first lay out the organization (as above) and then we can work on
one “subproblem” at a time. Another good program development strategy is to solve a simplified problem first,
so we will start with just one molecule.

Download from the course website the file moleculesModel.m. This script is in charge of initializations and calling
the function motion, which you need to write, to perform the simulation. Read moleculesModel carefully. The
script is set up to initially include only one molecule in the simulation. As you develop your simulation you will
need to change moleculesModel.

You will submit in CMS three function files: drawMolecules.m, motion.m, and checkCollision.m. In file
drawMolecules.m you will include a subfunction DrawDiskNoLine as specified. You may implement additional
subfunctions in the three files to be submitted as you see fit.

2.1 Drawing Molecules

Let’s start with drawing. Having this function allows you to easily check (visually) the different subproblems
that you’ll solve later. Implement function drawMolecules which has the following specifications:

function drawMolecules(x,y,r,w,h)

% Draw all molecules with axis limits w (x dir) and h (y dir).

% x, y are vectors of same length: (x(k),y(k)) is position of the kth molecule.

% All molecules have radius r.

% Assume r<w/2, r<h/2, and all the molecules lie completely inside the borders.

% The first molecule is magenta; all other molecules are blue.

Start your function with these graphics commands to maintain the correct axes throughout the simulation:
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cla % Clear axes (i.e., remove all drawn objects)

axis([0 w 0 h]) % Set axes limits

axis equal manual % Axes have equal scaling and are frozen at current scale

set(gca, ’xtick’, []) % No x-axis tickmarks

set(gca, ’ytick’, []) % No y-axis tickmarks

box on % Draw border

hold on % Subsequent plot/fill commands appear on current axes

Remember to put the hold off command before the end of this function. If you later have errors in your
simulation you may find it useful to see the axis tickmarks—simply temporarily comment out the two set

commands given above. Notice that the function starts with the command cla to remove previously drawn
objects. We draw one of the molecules in a different color so that later when you have a large number of
molecules it is easier to track the motion of that one molecule.

Implement a subfunction DrawDiskNoLine under function drawMolecules to help complete the drawing task.
(Recall that implementing a subfunction simply means writing an additional function in the same file of the
main function.) DrawDiskNoLine has the same function header as DrawDisk, a function that we have used many
times before (see course website). DrawDiskNoLine differs from DrawDisk in that the disk drawn does not have
a black border. This is easily achieved by calling built-in function fill with an extra property ‘Linestyle’:

fill(xvector,yvector,color,’Linestyle’,’none’)

Make sure that your function file drawMolecules.m has two (separate) functions in it: function drawMolecules

and subfunction DrawDiskNoLine. Now test your function. In the Command Window call your function draw-
Molecules: drawMolecules(1,3,.2,6,4) should draw one molecule, in magenta, 1/6 the box width from the
left and 3/4 the box height from the bottom. Try other values to make sure that your function is correct.

2.2 Simulating Gas Molecule Motion

Implement a function motion which has the following specifications:

function [xFinal,yFinal] = motion(x,y,vx,vy,r,w,h,T)

% Simulate the motion of molecules in a 2-d space with width w and height h

% over T time steps. All molecules have radius r.

% x and y are vectors where (x(k),y(k)) is the position of the kth particle.

% vx and vy are vectors:

% vx(k) is the x-velocity of the kth particle.

% vy(k) is the y-velocity of the kth particle.

% Return parameters:

% xFinal and yFinal store the positions of the molecules after T time steps:

% (xFinal(k),yFinal(k)) is the final position of the kth particle.

The first action (statement) in this function is to draw the molecules at their initial locations: just a call to
function drawMolecules. To start testing, run the given script moleculesModel, which calls your function
motion. You should see a figure window with a title and just one molecule in magenta. Now start developing
the simulation with just one molecule. Look at the overall algorithm given above again. Set up the overall
organization, the loop(s) and comments of the “subtasks,” in your function.

2.2.1 Simple Motion: Calculating the New Position

The distance traveled in one time step is v4t where v and 4t are velocity and change in time, respectively.
Consider each time period a unit time, so 4t = 1. Throughout this simulation we work with the x and y
components independently, so we have

x
′

= x + vx and y
′

= y + vy

where x and y are the current coordinates, x
′

and y
′

are the coordinates after the time step, and vx and
vy are the x- and y-components of the current velocity of the molecule. Remember that a simulation is just
an approximation—the new position calculated may be outside the borders. So in general a realistic-looking
simulation would need low velocities (or short time steps) so that such approximation errors are small.

Draw the molecules at the end of a time period. Then use the statement pause(.01) to pause program execution
for 0.01 second to create the visual effect of the molecule in motion.
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Run moleculesModel for testing. You should see the molecule moving in a straight line and eventually moving
off the box (disappearing).

2.2.2 Bouncing Off the Wall

Literally. When a molecule hits a vertical wall, its x-velocity reverses—just a sign change. Similarly, the y-
velocity reverses when a molecule hits a horizontal wall. Check for bouncing off walls, and if appropriate update
the velocity components, one direction at a time. When does a molecule hit a wall? When the edge of the
molecule is currently at or beyond the border. To reduce the appearance of a molecule entering a wall, if the
edge of the molecule is beyond a border update the appropriate coordinate so that the edge is exactly at the
border.

Run moleculesModel for testing. Now the single molecule should bounce around inside the box! You should
increase the number of time steps in moleculesModel now so that you can see several bounces off walls. Increase
the number of molecules, n in moleculesModel, to 2. You will see that the molecules “pass through” one another.

2.2.3 Collisions

A discussion of simple collision between two objects can be found in most elementary Physics textbooks.1 For our

purposes only the “simplified” equations for calculating the post-collision velocities of two molecules numbered

1 and 2 are given here:

v
′

1x =
1

d2x + d2y
(v2xd

2
x + v2ydxdy + v1xd

2
y − v1ydxdy)

v
′

1y =
1

d2x + d2y
(v2xdxdy + v2yd

2
y − v1xdxdy + v1yd

2
x)

v
′

2x =
1

d2x + d2y
(v1xd

2
x + v1ydxdy + v2xd

2
y − v2ydxdy)

v
′

2y =
1

d2x + d2y
(v1xdxdy + v1yd

2
y − v2xdxdy + v2yd

2
x)

where dx = x2−x1, dy = y2−y1, and the apostrophe, or prime symbol, indicates post-collision. It does not matter
which molecule is numbered 1. Of course, you apply these equations only if two molecules are colliding. In our
model, two molecules collide if there is any overlap between the molecules. Implement a function checkCollision
that has the following specifications:

function [vx1,vy1,vx2,vy2] = checkCollision(x1,y1,vx1,vy1,x2,y2,vx2,vy2,r)

% Check for collision between two molecules and update their velocities

% as appropriate. If there is no collision the velocities do not change.

% Parameters: at current time, i.e., BEFORE any collision

% x1,y1 are scalars representing the position of molecule 1.

% vx1,vy1 are scalars representing the x- and y-velocities of molecule 1.

% x2,y2 are scalars representing the position of molecule 2.

% vx2,vy2 are scalars representing the x- and y-velocities of molecule 2.

% r is a scalar representing the radius of each molecule.

% Return parameters: AFTER collision (if any)

% vx1,vy1 are scalars representing the x- and y-velocities of molecule 1.

% vx2,vy2 are scalars representing the x- and y-velocities of molecule 2.

Test your function by calling it in the Command Window. For example, the following call should have two
molecules traveling horizontally toward each other collide head-on:

[vx1,vy1,vx2,vy2] = collide(3,5,15,0,3.4,5,-15,0,.2)

The returned values should indicate that the x-velocities of the two molecules switch and the y-velocities remain
0.

1An excellent and concise discussion (that assumes some knowledge of vector algebra) can be found at
http://www.vobarian.com/collisions/2dcollisions2.pdf.
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Now that you have function checkCollision, you can call it from function motion. We will deal with pair-wise
collisions only: for each molecule, check against all other molecules. (This is not the most efficient algorithm,
but it is fine for our simulation.) Be careful with how you set up your loops. Examine the following fragment:

for k= 1:4

for j= 1:4

fprintf(’%d%d ’, k, j)

end

end

The output is 11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 . That’s all combinations of the indices
but with repetitions: combination 12 is the same as combination 21, for example. Additionally the combinations
“with itself” (11, 22, . . . , etc.) are included. To check all pairwise collisions you only need to check these
combinations if there are four molecules in total: 12 13 14 23 24 34.

Note that we are not concerned with the error in a collision of more than two molecules given our simple
algorithm. For example, suppose molecules 1, 2, and 4 are currently positioned such that molecules 1 and 2
collide and molecules 1 and 4 collide. Given our simple pair-wise algorithm, the velocities of molecules 1 and 2
are first updated using the post-collision velocity equations shown above. So by the time molecules 1 and 4 are
processed, the velocities of molecule 1 are no longer the original velocities and our code will be calculating the
post-collision velocities between molecules 1 and 4 incorrectly. We are not concerned with such errors.

Run moleculesModel to see the result. If two molecules seem to move correctly then change n to 3 (number of
molecules) and run the program again.

Our collision approximation scheme is far from exact, but it gives reasonable results most of the time, especially
for a small number of molecules. Visible problems (like multiple molecules stuck and tumbling together) are
seen sometimes when molecules have significant overlap before we detect a collision (velocity values are large or
initial positions overlap), in some 3-molecule (or more) collisions, and in some collisions at corners. Have fun
watching the simulation!
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