
CS/INFO 1305 Programming Exercise 1
Due Monday, July 23, at 6pm.
Submit either Level 1 or Level 2. Do not use these commands: break, continue, switch

1 Level 1

1.1 The Earth, an oblate spheroid (a what?)

→ a sphere flattened at the poles

The surface area of an oblate spheroid such as the Earth is given by A = 4πr1r2 where r1 is the equatorial
radius and r2 is the polar radius. Write a program that calculates and displays the difference between 4πr1r2
and 4π((r1 + r2)/2)2 for Earth data r1 = 3963, r2 = 3957. Call the program oblateArea.

1.2 Function evaluation

Write three different programs (scripts) to determine in which quadrant a user-input value of A degrees belong.
Assume that the user may enter any non-negative number. For example, 725◦ is the same, and should be treated,
as 5◦. (Hint: the function rem might be useful.) To avoid ambiguity, we use the following convention:

Quadrant is


1 if 0 ≤ A < 90
2 if 90 ≤ A < 180
3 if 180 ≤ A < 270
4 if 270 ≤ A < 360

Print the result. In the first script use four separate if statements (4 separate if-end constructs) and call the
program angle1.m. In the second script, use a single if-elseif-else-end construction for the evaluation and
call it angle2.m. In the third script, use nesting without using the elseif clause and call it angle3.m. Pay
close attention to the differences among the three programs.

1.3 Golden rectangles

The golden ratio φ = (1 +
√

5)/2 is one of the most interesting numbers in all of mathematics. For example, the
ancient Greeks regarded an L-by-W rectangle with L/W = φ or W/L = φ as the most aesthetically appealing
rectangle.

Write a script goldenRect that randomly generates the length and width of a rectangle. The length and width
should be in the range of 1 to 9. If the ratio of the sides (L/W or W/L) is within φ ± 0.2, draw the rectangle
in red. If the ratio is really “unappealing,” i.e., greater than 3, do not draw the rectangle. Otherwise draw the
rectangle in yellow. Use the given function DrawRect (see Lab 1). Use the following statements to set up your
figure window before drawing the rectangle (similar to drawDemo in Lab 1):

close all % close all previous figure windows

figure % open a figure window

axis equal off % use equal scaling in the x- and y-axes; hide the axes

How to generate a random value? The statement v= rand assigns to variable v a random number in the range
of 0 to 1. So how do you get a random number within a different range? First, the statement v= rand gets you
a real number in the range of 0 to 1. Next, scale (think multiply) and shift (think add) the value v to get the
range you want.

1.4 Stars, disks and rectangles

Write a script myPoster that uses the given functions DrawRect, DrawDisk, and DrawStar, to create a figure of
your choice! The only requirement is that the script must involve the meaningful use of a for-loop. It is not
necessary to use all three draw functions but you should use at least one. Have fun!

1



2 Level 2

2.1 My calendar

Write a script myCal that prints a one-month calendar. Your script should solicit input for the number of days
in the month and the starting day-of-the-week. The output from an example run of the script is shown below
(user input is shown in italics):

Number of days: 31
Starting day-of-the-week (1=Mon, 7=Sun): 2

Su Mo Tu We Th Fr Sa

1 2 3 4 5

6 7 8 9 10 11 12

13 14 15 16 17 18 19

20 21 22 23 24 25 26

27 28 29 30 31

For the user’s convenience when inputing the starting day-of-the-week, Monday is day 1, Tuesday is day 2, . . . ,
Sunday is day 7. However, for printing the calendar you must use Sunday as the first day of the week. The
output dates should line up neatly as shown above, but the format doesn’t have to be exactly the same.

Hints: (1) Use a for-loop to count from 1 to n where n is the number of days. (2) You need to set an appropriate
“test” to determine when to begin a new line.

2.2 Trajectory of a golf ball

In your physics course you might have studied the motion of a projectile. Now you
will write a simulation to plot the trajectory of a golf ball in flight, subject to air
drag (resistance). Without air drag, one expects the trajectory to be a parabola
due to Earth’s gravity, with equal time for ascending and descending, as shown in
the diagram on the right. What is the effect of air drag? You will find out!

We consider the golf ball to be a unit mass and air resistance to act in the oppo-
site direction of motion. Further we assume that air resistance is proportional to
the square of the velocity of the projectile. With these assumptions, the relevant
equations are

vx = dx/dt

vy = dy/dt

dvx/dt = −k · vx
√
v2x + v2y

dvy/dt = −k · vy
√
v2x + v2y − g

where vx and vy are the components of the velocity in the x- and y-directions, k is the coefficient of air drag,
and g is the gravitational constant. The golf ball is initially at x = 0 and y = 0 and is launched with some initial
velocity at an angle φ measured from the x-axis.

Download the file golfBall.m from the Projects page. Read and run it. Since the simulation code is missing the
output includes only a figure window with axis labels and “dummy values” printed to the Command Window. You
will complete the simulation and replace the dummy values with the actual values calculated in the simulation.

Here are the details of our simulation:

• The constants, parameter values, and initial conditions are given in the provided code. Develop your
simulation with the given values but you can (and will) experiment with different values later.

• The simulation begins with time t = 0 and position x = 0 and y = 0 and ends when the golf ball lands
(y gets back to, or passes, zero) or the maximum allowed simulation time has been reached, whichever
happens first.

• Given the initial velocity v and launch angle φ, the initial velocities in the x- and y-directions are vx = v cosφ
and vy = v sinφ

2



• We use differencing to represent the (continuous) derivatives. For example, instead of dx
dt we consider

xnew − xcurrent
4t

where 4t is a discrete time step. With this discrete representation, at each time step, i.e., each step of the
simulation, we can compute the new velocities and positions as follows:

vxnew = vx −4t · k · vx
√
v2x + v2y

vynew = vy −4t · (k · vy
√
v2x + v2y + g)

xnew = x+ vx · 4t
ynew = y + vy · 4t

• Starting at t = 0 and after each time step, plot the location of the golf ball. Recall that the command
plot(a,b,’ro’) draws a marker (red circle) at position (a,b). Choose any marker or color you like. Add
a pause of 0.01 seconds (pause(.01)) after the plot command so that the plotting plays like a movie when
the simulation is executed.

Run the code you have so far to make sure that the simulation works! At this point you should have
removed all the dummy values except perhaps those for variables ascendTime and descendTime. Does the
trajectory make sense (a curve that opens down, starting and ending at around y = 0)? Do the displayed
values in the Command Window look correct?

• Add more code to the simulation to compute the durations of ascent and descent. Do this using code based
on the simulation here—do not look up equations from textbooks! Make sure all the dummy variable values
are removed.

• Finally, modify the parameter values phi, v, k, and maxTime to see how the trajectory changes. Once you
change the parameter values, the complete trajectory may not be shown since the axes are set to 120m
wide and 100m tall and maxTime may be “too short,” but you can use the values displayed in the Command
Window to deduce the trajectory. Add a comment at the end of the script to answer these questions:

1. Which of these launch angle results in the longest horizontal range, π/3, π/4, π/5, π/6 (without chang-
ing the other parameter values)?

2. How does the flight time change with the launch angle? Answer in one sentence.

3. What is the shape of the trajectory when k = 0?

Answer the above questions simply by running the simulation with different parameter values. Do not
write more code.

Before submitting your file golfBall.m on CMS, change all the parameter values back to the original values
given: k=0.02, maxTime=10, phi=pi/4, and v=100.

2.3 The “Scintillating Grid”

Are your eyes playing tricks on you? Are some of those white
disks in the diagram flickering? The diagram on the left is an
optical illusion called the “Scintillating Grid.” If you focus on
a disk at a particular intersection, the neighboring disks appear
to flicker. Cool! Now stop staring at it . . .

Write a script scinGrid that solicits n, the number of squares
along each side, and draws the “Scintillating Grid.” Assume
that n is a positive integer value greater than 1. The example
on the left has n = 5. Approximate the proportion that you
see in the diagram and experiment with different colors to find
your favorite scheme (that shows off the illusion).

3



Parameterize your code, i.e., identify the main properties (values) that define the diagram and name them
as variables—parameters. Furthermore, choose one property to be the “root” and make the other properties
dependent on it. For example, let’s say that I see two important properties (there are more in this problem):
gap width and square length. Instead of “hard coding” the variable values as g=1; s=4; I should make one
variable dependent on the other, e.g., g=1; s=4*g; . Parameterization is an important concept in design and
computational engineering. Choosing parameters wisely allows you to easily experiment with different values to
“tune” your model and keeps your code easily maintainable.

Use the provided functions DrawRect and DrawDisk. Download the files from the course website and put them
in the same folder as your script scinGrid.

Graphics note: Use the typical figure window setup that you’ve seen in previous graphics examples. Recall that
axis equal off gives equal scaling in the horizontal and vertical axes and hides the axes labels.

4


