Previous class:
- Play with sound files
- Practice working with vectors

Now:
- Play with image files
- 2-dimensional array—matrix

Grayness: a value in [0..255]
- 0 = black
- 255 = white

A picture as a matrix—2-dimensional array

2-d array: matrix

- An array is a named collection of like data organized into rows and columns
- A 2-d array is a table, called a matrix
- Two indices identify the position of a value in a matrix, e.g., \(\text{mat}(r,c) \) refers to component in row \(r \), column \(c \) of matrix \(\text{mat} \)
- Array index starts at 1
- Rectangular: all rows have the same # of columns

Creating a matrix

- Built-in functions: ones, zeros, rand
 - E.g., zeros(2,3) gives a 2-by-3 matrix of 0s
 - “Build” a matrix using square brackets, [], but the dimension must match up:
 - \([x; y]\) puts \(y \) below \(x \)
 - \([x; y]\) puts \(y \) to the right of \(x \)
 - \([4 0 3; 5 1 9]\) creates the matrix
 - \([4 0 3; \text{ones}(1,3)]\) gives
 - \([4 0 3; \text{ones}(3,1)]\) doesn’t work

% What will M be?
\[M = \text{[ones}(1,3); 1:4] \]

\[M = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 \end{bmatrix} \]

\(A \)

\[\begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 2 & 3 & 4 \end{bmatrix} \]

\(B \)

\[\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \]

\(C \) Error – \(M \) not created
What is \([7 \ 0 \ 5]’\)?

- A: Same as \([5 \ 0 \ 7]\)
- B: Same as \([7; 0; 5]\)
- C: Same as \([5; 0; 7]\)

What will \(A\) be?

- A = \([1 \ 1]\)
- A = \([A’ \ \text{ones}(2,1)]\)
- A = \([1 \ 1 \ 1 \ 1; \ A \ A]\)

- A: 3-by-4 matrix
- B: 4-by-3 matrix
- C: vector of length 12
- D: Error

Working with a matrix:

- size and individual components
- Given a matrix \(M\)
 - \([nr, nc]= \text{size}(M)\) \% nr is #of rows, nc is #of columns
 - \(M(2,4)= 1;\)
 - \(\text{disp}(M(3,1));\)
 - \(M(1,nc)= 4;\)

Images can be encoded in different ways

- Common formats include
 - JPEG: Joint Photographic Experts Group
 - GIF: Graphics Interchange Format
- Data are compressed
- We will work with jpeg files:
 - \(\text{imread}\): read a .jpg file and convert it to a “normal numeric” array that we can work with
 - \(\text{imwrite}\): write an array into a .jpg file (compressed data)

Grayness: a value in \([0..255]\)

- 0 = black
- 255 = white

These are integer values

Type: \text{uint8}

Let’s put a picture in a frame

- Read a grayscale jpeg file into a matrix \(P\)
 - \(P = \text{imread(’<filename>.jpg’)};\)
- See the image represented by \(P\)
- \(\text{imshow}(P)\)
- Change the “edge pixels” into the frame color (grayscale) you want
 - ...
Problem: produce a negative

“Negative” is what we say, but all color values are positive numbers!

Think in terms of the extremes, 0 and 255. Then the “negative” just means the opposite side.

So 0 is the opposite of 255;

1 ... 254;
5 ... 250;
30 ... 225;
x ... 255-x